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NOTES ON THE DESIGN OF DIRECTIONAL ANTENNAS

1. Three-in-line

Any three (or multi) element directive array where all
elements are along a straight line and equally spaced may be re~
solved in a series of two-element patterns which are *‘‘multiplied*’
together. Each two-element array may be considered as a vector
of radiated field which may be combined with similar vectors
representing various array combindtions.

Take a two-element array with the elements spaced
S electrical degrees, a phase difference of P degrees between
elements, and identical fields radiated by each ele-ment which may

be considered unity:

)tp S A(P (1)

/7 Yaid
The above array may be computed Sy the '‘half-angle’’ formula
cos ( %c\os 9+-:- ) where the constant is omitted, and the angle @
is measured from the ‘‘leading’’ side of the array axis. Now
picture an identical array oriented along the same axis, with the.
same phase difference P betiween its own elements, as exists bet-

ween the elements of the first array, but with a phase difference

P’ between corresponding elements of both arrays:
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Now move the two arrays along the common axis so that elements

B and A’ coincide:
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Subtract = from the phase of each element in order to arrive at a

symmetrical (about the center) configuration:

A BA B'
HP—P' S : P’ ? " (4)
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The vector equation for this array now, taking the

_center element as a reference point, and zero degree azimuth

along the axis in the direction of the leading tower is obviously:

18- +1/-5+5 +1/Scos @+ §+5 +1/5 cos (©-180)-(5+5)

which may be expanded and simplified to give

2 cos(%-%')i-z cos (S cos © + ":"')

An equation fof the same configuration may also be
obtained by the following reasoning:
In Fig. {2) above represent each array by its half-angle formula
cos (-g-cos 9-!-%) . The combination of the two similar arrays
(except for the phase difference P°) piétured in Fig. (4) may then

be represented as a two-element array where each element does

not radiate unity field, but the field ¢08 (":' cos @+ %),
8 P { 8 P '
cos(icose+§) 0 cos(-icose+5)£P

X— - — — - o= - = == X = === 0o— =" = —X
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and each element is assumed to be located at the midpoint of the

(5)

original arrays so that the spacing between them is again S. Now

the half-angle formula is again applicable to the assumed new
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element (each representing the original two~element array) so that the

resulting three-element array is expressed by
s 4 s g

coSs (2 cos O+ 2) cos(2 cos O+ 2)

It can be shown that

E = Kcos(3 cose+-:—)cos(§'-cose+§')
is identical to
E=K' [2cos(§-§)+ 2 cos (S cos 9+3-;“—”-:)]

where K = 4 K’

The patterns discussed so far are based on unity field
ratio in each component two-element array which will produce ‘‘zero’’
nulls., In order to make the nulls different from zero, several methods
may be employed. If it is desired to have equal minima in ‘the pattern
nulls, a quadrature component may be added to the field radiated by

the center tower. The component q added to {4) results in
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Development of the vector equation results in

E =K \/[2005(—-—3+2cos(scose+P+P)] [u]?

Due to the trigonometric relations the multiplication formula
developed from (5) by addition of the quadrature component

to the center tower will assume the form

E=z=K cosz(gcose+%)cosz(% ct:tsa9+§')"'(%)z

where, again, K = 4K’

If nulls of different magnitude are desired, the development will
proceed from the multiplication formula employing field ratios
different from unity.

We start again with a two-element array

% S
10° LPe o

2
L4 4+ cos(Scos©+P)

2r
In order to simplify the formulas,

which gives a component equal to\/

A development similar to the one discussed above for
unity field components will consider a similar array where corres~

ponding elements will be displaced in phase by P’ degrees, and bear
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a field ratio r' with respect to the original array. Proper place-
ment of the array will result in coincidence of elements similar
to (2) and (3), and the equation

E=K -\/[R+cos(3cose+P)] [R'-!-cos(S cose+P')]'

results.

Development of the vector equation follows:

- Two two-element arrays (7) are arranged collinear:

% S 2 * S X (8)
| -% r +% | -% r +%

Elements A’ and B’ are displaced in phase P’ degrees with regard

to A and B and carry fields in the ratio r’ to A and B:

: T — :
P_p PP'(Q)

B_E PP ' eLF
r/+2 2 rxl/ iy rxr{+2+2
Now let elements A’ and B coincide:

A : BA
[¥] S E
IZ'%"’z ""'Z“"%""%

Taking the center element as a reference point, the following
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equation may be developed:

€=k (r/+5-F +r'/-§+F +r'r/Scoso+(§+5) +1/Scos(0-180)-G+5) )




Expansion and simplification results in:

Eok' 4\/[(” r') cos (%-%.)-l'(r'rﬂ) cos (S cos 0+%+-;-.)]r
+

[(r-r')sm (%'%)Hr'r-l) siN(Scos 9*%*%’]2-

It can be shown that
K'= K

2+/rr’

The development of (10) has to be watched carefully for algebraic

signs which will depend on the direction for which the reference

axis is taken. The procedure illustrated above considers the leading

" phase side as the zero direction.

By employment of the ratios rand r', various com-
binations are possible as follows {only ratios are considered with the

phase relations being the same in each case):

| r

r rr_' (10 a)
r |

rr' r (10 b)
r' rr'

} r (10¢)
rr' r'

r I (10d)
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All above combinations result in the same horizontal

plane pattern. If all elements are of equal height, the vertical

sections will also be identical. However, if one or two elements are

of different height, vertical sections will be different for each com-

bination. The choice of the proper combination will then depend on
the shape of the vertical section most desirable.

Similarly, although current and power distribution
may be different for each possible combination, the resultant power

gain is the same if the towers are of equal height.

It is conceivable, although usually not required or
practical to add a quadrature component to the center element in
(10) (or any of the variations}), which would increase the field in all
of the nulls. Derivation of the equations for this case would be

somewhat simpler for actual numerical values than for the general

case.

2. Off«-set center tower.

If a slightly unsymmetrical pattern is desired, or
if nulls of varying deepness are called for, it may be advisable to
off-set the center-tower by a short distance, after the pattern has
been developed in the manner previodsly described. The array (10),

with its parameters simplified yields

A ~ BA B8
— S H— S —X (1
\/=B r/ra rr/+8

r/~-&




where 8

L

PLE =B
2+2and a e

Now assume the element BA® to bé displaced along a line which includes

an angle ¢ with the array axis by a spacing of S’ electrical degrees:

rira BA -
"Z:gc:)/" ¢ '

A , | B
* S —o S —X (12)
-4 - rr'f+ g

For this case, only the vector sum equation can be developed. Taking
the midpoint between A and B' as a reference point, zero azimuth
along the axis AB’', and progressing in a counter-clockwise direction

(12) may be expressed as

E=K'[rr'/Scos0+8+ 1 /Scos0-180)~8 +r/ S'cos@-d)+a +r'/ S'cos(0-d)-c ]

which after expansion and simplification yields:

[(rr'+1) cos (S cos©+8) + (r+r')cos[S'cos (0~ ) + a]]z
E=K’
+[(rr'-1) sin (Scos©+8) + (r-r') sin l.'S'GOS(e"‘N""”]]a

This formula resembles the one for the three-in-line

previously developed, and permits a better estimate of the result, and

is more readily adaptable to the actual computation work. Of course,

field and phase values for each element may be changed arbitrarily
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to suit the design purpose, but equal and opposite phases in the
elements A and B' have to be maintained in order to keep the
formula relatively simple.

3. General 3-Element Configurations

Any three element array regardless of the physical
arrangements of the towers may be computed by using one element,
or any arbitrary point in space as a reference point. Practical con-
siderations will dictate that for equal height towers the reference
point should be chosen symmetrically by space and time phase
relation with regard to two elements. This permits evaluation in
accordance with (12) above, and simplifies the computations. If
one element is of different height, this element should be taken as
the reference point for the computation of vertical sections. This
applies also to a three-in-line configuration, because the simplifi-
cation of the vertical section computations outweighs the possibly
more curmnbersome horizontal formula.

4. Four or more elements, all in line

Considerations leading to the development of the
three-element array may be expanded to include additional elements
up to any desired or practical limit. However, the method of develop-
ment will depend on the desired configuration; especially on magni-
tude of null values, placement of towers of different height, and con-
sideration of power distribution within the ar'ray. Various methematical
short-cuts are sometimes possible which simplify the computations.

The analysis of equal-field components arrays
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shown by (1) to (4) and (5) to (6) above may be expanded to yield a
four-element array as follows:

The configuration (4), constituting a resulting three-element array

can be represented by
A B T
e S X (13)
/-8 I/t |[+,8
-2

which is identical to (4) with B=5+& and @=&-%&

Now assume a similar array A'B'C’ placed such that
elements A’ and B, and B' and C coincide, at the same time off-
setting elements A’, B’, C' by a phase angle & from the corres-

ponding elements A, B, C. A four-element array will result

from all phase angles looks as follows:

which, after subtracting g-

A BA' cB' c
* A S *— S —H— S X (14)
\[-B-% /ta-% | /+8-% | [+ +%

| /-a-% | [+ +%

5 a4

The vector equation for this array in its simplest form is based on

the use of the midpoint between BA’ and CB' as a reference point.

It will assume the form
E=K' [m cos(g- cos O+ $)+2cos (3—:' cos ©+¥)]

Where m, ¢, and ¥ are contractions of the vector combinations
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shown in (14). In general, actual numerical values will be easier
to use than general formulas in every case where the number of

elements exceeds three.

Similar operations will extend the number of elements
to any desired valu;. The four-element array (14), for instance,
is duplicated with the phase difference & between corresponding
elements. Now let three elements of each array coincide, and the
five-element array is obtained. The vector-sum formula uses the
center element as a reference point.

In general for multi-element arrays of this type

computation is simplified if the phases are arranged symmetrically

to a reference point which is the center element for arrays of an

odd number of towers, and the midpoint of the array for an even
number of towers.
A development analogous to (5) may be used to

extend the multiplication formula to more than three elements.

For unity field ratios in the components the half-angle formula may

be used, and the general expression

E=K cos(% cos 6+£~)cos (-E- cos O+ %') cos (% cos e+%") .......

For an n element array the above expression will have n-|
terms. The numerical relation of the constant K for an n element
array to the constant K' used for the vector-sum expression of

the same array will be

K:2" k'




if unity field ratios exist in all components.

For different field ratios in the components the multiplication

\

formula assumes the form

E=K [R+c03(Scos®+P)][R'+cos(Scos©+P")][R"+cos(Scos®+P")] -~

The vector equation for such an array may be developed by
extending the procedure followed in (8), (9), and (10). A general
expression would be rather cumbersome, but the use of specific

parameters will permit simplifications. Care should be taken so

that all phases are arranged symmetrically. The relation between
the constants K for the multiplication formula for an n element
array having the field ratios r . r', r" , and the constant K' for

( J the vector sum formula is given as follows:

where for each r:

_1+r?
R="5r

The number of possible combinations which yield the identical
horizontal plane pattern increases rapidly with the number of

e¢lements and may be visualized by setting up-a table similar to

(10a) to (104). Considerations of vertical distribution (for unequal
height towers), and current and power distribution, fnay influence

the choice of the proper combination.

In analogy to (6) a quadrature component may be added to the
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center tower of any array consisting of an odd number of elements,
which will provide equal field intensities in the nulls of the array.

The added component '‘a’’ will appear as the quadrature term

( 2:_| )2 in the modified multiplication formula.

From a pure mathematical standpoint it is, of course, possible to
add any component to any element of a multi-element array. How-
ever, the individual case will determine which procedure can be
handled most conveniently from a px"actical view, considering the
amount of computation work required, and the desired simplicity in
derivation.

A four-element array with all elements in line and
equally spaced may frequently be computed or analyzed in the
following manner:

Two two-element components are selected which
should have equal values of field intensity in their nulls.

They are combined in accordance with {5), and a quadrature
component ‘‘a’’ is added to the center~element of the three-element
combination (). This component three-element array is then
repeated along the same axis so that there is a phase difference
P and a field ratio r between corresponding elements. Then
two elements of each array are made to coincide similar to

(14) and the following equation results:

E=K 'J[cosz (2 cos©+£) cos? (Zcos O+ E') +%2] [R+cos(ScosO+ F")]'
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where

b+r2
2r

R=

r is selected fo give the desired null value for the third component.
The vectors may be set up similar to (14), and the vector equation
uses the midpoint of the array as a reference point. 'The constant
K' for the vector equation is related to K as follows: |

K= —&

" aJzZr

A general derivation of the vector equation again is cumbersome, and
step-by-step computations using given parameters are much easier

to handle.

- 5. Four or more elements, on corners of parallelogram.

For this configuration, an analysis is employed

which is similar to the one used for certain three-element arrays: '

g re/*F
/\ (15)

o sS,‘

ILQ_\ 4 ne [th+h

4
S “%
/

MERENOE AXiS

The pair AB is spaced Sl electrical degrces., a phase difference of

P degrees, and a field ratio r, . The reference axis is taken as

N
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zero degrees through the leading tower B, and its equation may be

expressed as

v/ R, +cos(S,cos©+R) where Rz

|+ r2
2n

As shown above, this field may be considered as originating from the
midpoint between the two elements. Now take a second array A'B’
oriented on a line parallel (but not necessarily collinear) to AB,
which gives the same expression for its field if the relations bet-
ween A’ and B’ are identical to A and B. If now A' and B’ lead theiz;
corresponding elements A and B by P, degrees, radiate r times the
field radiated by A and B, and a.re each S2 electrical degrees from

their corresponding elements A and B, a two-element array is again

formed by the midpoint of AB and A’'B’ which produce the field

J/ Ry *cos (Sycos © +F,)

|+r
Tr_a and © is counted from the reference axis
2

joining the midpoints of the two arrays.

where R2=

Combination of the two expressions is again by
multiplication, and if the axis through AB is taken as a reference,
the angle @ counted from it differs by @ degrees from the angle e'

counted from AA’ BB'. The complete equation becomes

E=K -\/_[R; +c08 (Sjcos© + ﬁ;][Rz* cos(S,cos[©-a] + Pz)T

where the angle © is counted from the axis AB toward that axis

BB’ which forms the angle o with AB.
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If the arrays are collinear, then @ =0 , and a four-in-line results
which may be more useful in Cert‘ain designs than the four-element
arrays previously discussed.

For any particular case, a vector equation may be
derived using any of the elements or any convenient point as a ref-
erence. The individual fields and phases for the elements appear in
(15). Using these values in a vector equation, the constant K' of that

equation is related to K above by the expression,

K'-____IS..__.....
2vVh T2

which is identical to the relations for a threé-element array des-
cribed by (10).

The reasoning for the four-element parallelogram
arrangement may be readily expanded to include more elements if
they are arranged in parallel rows. The pattern produced by any
particular row is considered first, and multiplied by the factor
resulting from the combination of various rows. It is not practical
to develop'a general equation for an n element array of this kind.

The actual computation work may be considerably
simplified by suitable trigonometric transformation if the given
parameters permit such a procédure.

6. Other Configurations

‘elements must be handled by ‘‘brute force’

Unsymmetrical configurations of four or more

*

vector additions. This
applies also to the vertical sections of any array having unequal

tower height.
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« Computation of Mutual Impedance Values, Power Distribution
Power Gain, efc.

A study of the vertical distribution for a single element
shows that the ‘‘effective field’' radiated along the horizontal plane
varies with the electrical height. Without going into the physical
basis and mathematical derivation, we can picture the three-dimen-
sional radiation pattern as concentrating more or less energy at low -
vertical angles for varying height t;:wer for the same amount of total

energy radiated over the hemisphere. Numerically, the following

formulas apply:

.
e (IR HE HERI SR IT) !_...a_,!\ e ¥

The vertical distribution for a smgle element is given as

“gos H- cos (HsINV)

fivy = (cos H-1) cosV Yo vt LI YR Gy
N R WG R ‘uf\ﬁ CNE, Qo
where H is the electrical hexght and V is the vertical angle of eleva- ot

tion taken as zero at the groundplane.
The relation between base antenna current and unattenuated field at

one mile is given by G. H. Brown as

- l-cosH
E=37.25 I, — 20— MV/M

where Io is in amperes.
For changes in antenna héight both H and I0 vary; the latter being
dependent on radiation and loss resistance.

For a directional array we may obtain various
types of vertical distlribution which again may or may not concentrate
enerjy along the horizontal plane for the same amount of total energy

radiated over the hemisphere. If we compare the energy along the
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horizontal plane pattern for a specific directional array, and a single
tower having the same height of all or the majority of towers in the
array, we arrive at a definition of power or field gain. Obviously,
this field gain is a geometric property of the array due to the

shape of the three-dimension hemis pherical pattern. However, it

can be shown that these geometric relations may be computed and

destribed in terms of current and impedance relations between the '

elements.

An analysis of this kind, therefore, permits a deter-

mination of the following quantities:
1. Operating impedances for each element.
2. Base currents for each element.
3. Power distribution within the art;ay.

B 4. Power gain of the array measured along the horizontal
plane and determination of actual values of radiated

field produced by the array.
The analysis also permits allowance for loss resistance, or actual
measured values of the resistance of individual elements.

Development of a complete equation covering all these

points will not be attempted because it is not practical. A step-by-

step consideration will permit determination of all desired quantities,
and still preserve a clear picture of the problem and its engineering
solution. The basis for this line of computation is the field and phase

distribution of the various elements, and the self-resistance of each

element. The fields and phases of the various towers are arranged

so that one convenient element is taken as unity field at zero phase. -
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| r For theoretical consideration values of self-resistance for elements
of various height have been computed; if desired, measured values

may be used.

For each element the following relation exists: The
voltage induced in each element is the vector sum of the voltages
induced by the currents flowing in the element itself, and in all the

other elements of the array.
V' z I.Z'= I|Z" + Izzm»« BZ..“'!-

where Il is the operating current in tower 1, Zl its operating imped-

ance, Z its self-impedance, 12,13...... are currents flowing in

elements 2, 3,...., and Zm,Za‘..... are the mutual impedance values

between elerments 2 and 1, 3 and 1, etc.

(f-\:\ Dividing the expression by II , we obtain
—
= le i3
Z,=27,+ I, Z,+ l 2

where all quantities are vectors and the actual computation is best
performed using the polar form.

For equal height towers, the field ratio equals the

current ratio. However, if the towers are not of equal height, the

current ratio has to be determined by the use of the relation

E= 3725 Io-'ﬁ@ﬁ.ﬂ. which gives for two towers

E, Il I-cosH, sINH,
—.—._x x
Ez I2 |- cos H2 SIN l--l|

i

{/—_\5
r
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The values of mutual impedance for various assumptions of tower
height and spacing may be computed using formulas developed by
Russell Cox in I. R. E, Proceedings, November, 1947. For equal
height towers not too different in electrical height from a quarter-
wave sufficiently close results may be obtained by using values
for quarter-wave towers which have been computed separately
and are shown in graph form.

For all computations ‘'per unit’’ values are easiest
to handle, except when different tower heights are employed. In
this case it may bé more straightforward to use actual ohms in
order to avoid errors in ratios.

After all values of mutual impedance are obtained,
operating impedances and currents are determined for the desired
power input. Comparison of the field intensity values obtained
from the operating currents with the theoretical fields gives power
gain or loss of the array. |

The entire procedure is outlined below using an
example with definite numerical values.

The directive array authorized for installation by
WNDB, Daytona Beach, Florida, consists of three elements and
will be operated on 1150 KC with I KW power during nighttime hours.

A

/13s¢_ B N | ‘
\\_’mo“ {16)
\

22, Oo €

S

””806
Pertinent constants and operating parameters for the towers are as

follows:
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Tower Height Field ' Relative Phase
A 347'=146° 0.62 0°,
B 220°'=92.5° 0.61 -175
C 220'=92,5° 1.00 +105

The equation for this array uses the 146° high tower-A as a
reference point, and the line N 116° E as a reference axis, pro-
ceeding in a counter-clockwise direction. For an estimated
R.M.S. value of 190 mv/m for 1 KW power, the equation is set up

as follows:

E=140.8 {o.sz f,(V)/0° +1,(v) [0.61/135 cos (A-10) cosV~I75 +1.0/270cos AcosV+105 }

where f (V) and (V) are the vertical distribution factors
for the 146° tower, and for the 92.5° towers, respectively.

For the first evaluation of operating impedances,
power distribution, and power gain, all towers are considered thin
radiators of the electrical height stated. As tower ‘A’ is of
different height, the current ratio is not equal to the field ratio. .

Retaining unity current in tower '‘C'’ we can write

B-Eﬁxl-cosHA*sch
Ec Ic l-cosH, sinH,

which results in

EA I-cos Hc SIN HA
I === X X =,
A E."C 1-cosHa sml-l_c

198
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The current ratios are, therefore, as follows:

Tower Relative Current
A .198
B 61
C 1.0

The mutual impedance values between the towers are computed as

stated before, and are found to be

Z,g =25, = 48.1/=69.7° ohms
2o *Z,, 729.4/4162° ohms
Zge 3Zgg =211 /-80°  ohms
ch was not computed in strict accordance with the theory, but

as the height of towers B and C is very close to one~quarter wave,
sufficiently close values are obtained by using the readily avail~-

o
able mutual impedance values for 90 towers and correcting it by

the ratio of the resistance values for 90° and 92.5° towers.

A graph of self-resistance versus electrical height
for the radiators gives a value of 39 ohms for the 92.5° radiator,
and 322.5 ohms for the 146° radiator.

Substituting in the expression

for the three elements in turn we first note that it is sufficient
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to take only the real (co-sine) or resistance component of the
additive terms into account, because the reactance components do

not affect the power distribution:

o, 061/-175 1.0/+105 .
R, =R [322.5/0° + 0196,0 X 48.1/-697 + oussL_"zg“ﬁ'sz ]

R, = 251.4 ohms

' 0.198 1.0£+105
Ry =R [3970° +or-mm % X 48.1/-69.7 osf—%_ x 21.1/-80° ]

= 2.4 ohms

] . . 019870 0.61/-175 :
=R[ 30700 +o C=-x29.4/4162 +—i=r +ios * 21 go° |

z 54.94 ohms

Knowing the operating resistance values, the power in the array

per unit current in tower '‘C’’ equals the sum of the IzR's in

all towers. This may be set up more conveniently in form of a

table as follows:

Operating
Tower Resistance Unit Current Unit Power
A 251.4 .198 9.86
B 214 .61 189
C ‘54.94 1.0 54.94
Total Unit Power-----.... 65-69
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Proportional current for 1000 watts

input Poweronooo---p-.-o-uainl|0 1000 = 3.90 &mpS-
65.69

We then set up:

Operating Cﬁrrent for Power
Tower Resistance 1 KW input Watts
A 251.4 0.772 150
B 2.4 2.38 13.6
C 54.94 3.90 836.

The power of all towers should add up to the total input power of -
1000 watts (within the limits of the accuracy of-the computations).

As the computations are based on unity current or
field in tower ''C'’, the field for the array can now be determined
by use of the conversion formula

E, = 37.25 I,/ CosHe
siNH,

which gives 151.6. This, as apparent from the array formula where
G is unii;.)r field, is the value of the array constant. This constant
has the dimension of field intensity, and is directly proportional to the
value of field intensity in any direction as well as to the R.M.S.
value. As the assumed R.M.S. value of 190 mv/mresulted in a
constant of 140.8, the theoretical R.M.S. value for the array, dis~

regarding losses is computed as

151.6 x 190 - 204.8
130.8 | mv/m

This may be compared to the theoretical effective field of a single

tower having the same height of towers B and C, or having the
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height-of tower A. A relative value of field or power gain may be
defined that way.

For consideration of losses it is usually sufficient
to assume a value of loss resistance in series with each tower.
Values range from 0.5 to 2.0 ohms; the latter being a fair average
for medium soil, and a good ground systemn. For the WNDB array

a two~ohm loss per tower would result in the following values:

Operating resistance Unit Unit Current for
Tower including loss Current Power 1 Xw
amps.
A 253.4 .198 9.9 757
B 4.4 61 1.6 2.33
C 56.94 1.0 56.9 3.82
. 68.4

_ / 1000 = 3.82 amps.
Ic - 68.4

The 3.82 amps. value for tower *'C’'’ results in a constant 148.5,
and an R,M.S. value of 200.5 mv/m per KW.

| The analysis described above will serve to describe -
the array on a strictly theoretical basis. It would in itself indicate
that the original assumption of a 190 mv/m R.M.S. was low, and
should be increased to about 200 mv/m. It shows that theoreticﬁlly
this array could not develop an R.M.S. greater than 204.8 mv/m
for 1 KW power input.

It is interesting to compare the obtained R.M.S.

value with a value that could be arrived at under the as sumption
.that all towers are of equal height (92.50). In this case it is

practical to use per unit values for mutual impedance which are
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as follows (computed for 90° towers, but close enough for the

92.5° elements):

N
1

s = 545 /-76°
345 /+157°
— Zge = .54 /- 80°

The self~resistance of the 92.5° element is 39.0

n

ohms. The current ratios may now be taken to equal the field
ratios, and computations yield the following per-unit operating

resistance values:

+ 0.748

rA =
FB = + 0.081
rc = + 1.461

For 39 ohm self-resistance the per unit values are multiplied by

39 to give the operating resistance values. The following table is

set up:
Operéting Current .
Tower Resistance Ratio Unit Power Current (amps)
A 29.2 0.62 11.2 2.35
B 3.16 0.61 1.2 2.31
C 57.0 1.0 57.0 3.79
69.4

- flooo _
.2 V%92 =3.79

The constant is again defined as

K= 37.25 1129021 - 1478

O RMS. < Jgg*190 = 1995 mum
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This may be compared to the value obtained by using the actual
tower height (204.8 mv/m). The field gain due to one higher tower,
in the case of this particular array, amounts to 2.7% which is |
apparent from the ratio of the R.M.S. value. The reason for a

horizontal field gain is that the one higher tower in this particular

array does suppress vertical radiation and tends to concentrate

the field at low angles near the horizontal plane.

8. Use of Measured Data and Integration of Such Data into
Computations of Effective Field and Power Distribution

The use of measured resistance data would, off-hand,
not appear to present particular problems. We may, for the
simplest case, split a measured base resistance R,‘ into a value

R0
The R

and a 2 ohm loss resistance so that R, =R, -2
o Partis used as a basis for mutual impedance values, and
the 2 ohm loss resistance is added to the operating resistance
values obtained.

This method, straight-forward as it may seem, may
lead to amazingly impossible results. The widest variations will
be apparent (a) if the tower height approaches one-half wave, and
(b} if the tower is self-supporting and has a relatively broad base.

The theoretical resistance of a half~wave radiator approaches

infinity. In practice, values of several hundred ohms have been

measured. Allowance should also be made for the velocity of propagation

along the radiator which makes the tower appear to be electr:ically

higher than its physical length (the increase usually being taken as

5%).




- 28 -

Of coursé, if mutual impedance values between dis-
similar towers (in height, shape, or both) are computed, values
found by the theoretical assumption of infinitely thin radiators
cannot be directly applied if actual base resistance measurements
show a discrepancy from the theoretical value.

For example, in the WNDB array described above,
the high tower A is existing, and its base resistance has been
measured. It is a self-supporting, tapered, triangular tower. The
resistance, as measured, is 221 ohms, which is considerably lower
than the theoretical 322.5 ohm value, and the base current will be
2.13 amps. per kilowatt. Assuming the theoretical current distri-
bution of a 146° high tower, and 1 KW power input, this tower would
develop an effective field of 259 mv/m for a base current of 2.13
amps., which represents an increase of 21% over the theoretical
effective field of 214 mv/m for a 146 tower. An increase of this
kind has not been observed in actual practice. If the apparent
height increase due to the velocity of propagation is considered, the
discrepancy.becomes even more glaring.

In general, self-supporting towers have lower base
resistance values than uniform cross-section guyed towers, and
these values are considerably below the theoretical values for
tower heights approaching one~half wave.

Of course, such discrepancies would tend to in~
validate the results of mutual impedance calculations giving un-

reliable or even impossible values. In the instant example, we
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should not use a base resistance value of 221 ohms in rconjunction
with mutual impedance values based on 322.5 ohms for the high
tower, especially as there is reasonably close agreement of theo-
retical and measured values for the short towers which are
uniform cross-section.

We may, of course, assume that the current dis-
tribution in a tapered tower is not the same as in an infinitely thin
radiator, and may not be even sinusoidal. The exact nature of
that distribution seems to be beyond the scope of the mathematics
usually associated with the theory.

In the case of towers between 120 and 160 electrical
degree height, the theoretical resistance varies rapidly for even
small height changes. It may be suggested that the measured base
resistance is taken as the determining factor, and the tower is
assumed to have a sinusoidal current distribution for the height
corresponding to the base resistance for a thin tower having
sinusoidal distribution. This approach should be used for the
purpose of determining mutual impedance values only.

This method has been tried in the WNDB case uéing
the following procedure:

(a) The measured 221 base resistance of the existing tower **A”’
was assumed to consist of a 219 ohm radiation term, and a 2 ohm
loss resistance. The 219 ohm radiation resistance corresponds
to a 139° high ‘‘ideal’’ (infinitely thin) radiator.

(b) The new towers are expected (from data supplied by manu-




- 30 -

facturers) to have a base resistance of 45 ohms. This is taken as
the sum of a 43 ohm radiation term, and a 2 ohm loss term. The
43 ohm radiation resistance corresponds to a 95° high *‘ideal"’

tower.

(¢) Mutual impedance values are how computed for the ‘‘equivalent’’

tower heights obtained. These values are:

Z, = 44.9/-71.6°

Zye = 28.1/+161°

Zyc=234/-80° (This Zy, value taken proportional to a

90° mutual impedance.)

(\ (d) The current ratio between towers was now based on the com-
parison of 952 and 139° towers. ( I, :I,:I,=0.253:061:10
(e) Based on {c) and (d) the followihg base operating resistance

— . values and base currents were obtained (after adding 2 ohms loss

resistance to each tower:)

R, = 169.2 ohms I, = 0.918 amps
Ry = 4.6 ohms Iy = 2.21 amps
R, = 63.250hms I, = 3.63 amps

Based on the value for I. , and the equivalent tower height for

““C*’, the constant K is found to be 147.5, resulting in an R.M.S.

value of 199 mv/m.
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It was not necessary to take velocity of propagation into account.
The analysis is based on an assumed height and current distri- 7
bution anyway, and the only physical fact considered is the
measured base resistance of the employed tower, or a similar
radiator. |

All these various methods show that, in this par-

ticular case, at least, there is not too much variation in the

result. However, the data computed provides a range of operating

values which may reasonably be expected from the array. Com-

ponents of phasing gear should be designed to take care of at

least those variations which are indicated by the different methods

of computations.

The results also indicate that the R.M.S. estimated
for the WNDB directive array was low, and the design should be'
modified for an R.M.S. value of about 200 mv/m instead of 190
mv/m. However, specified tolerances (or M.E.O.V.) will permit
the increase without violation of any protection requirements.

In case of towers of unequal heightl, it may be pos-

sible to compute operating data on the basis of loop current

and looE resistance val_ues rather than base current and base

resistance values. Such an approach should be based on the primary

integration formulas appearing in the pertinent literature.




