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INTRODUCTION

For theoretically perfect reception of any frequency modulated (FM)
signal, an infinite transmission and reception bandwidth is required.
This is due to the nature of FM, which creates an infinite number of
sidebands whose structure is determined by the modulation index. In a
perfect FM transmitter, the output power remains constant, but as the
modulation index changes, the power distribution between the carrier and
the sidebands changes.

Practical applications require finite bandwidth restrictions on the
FM signal. For the broadcaster, several elements reduce the transmitted
bandwidth of the FM signal, including tuned stages in the transmitter
grid and output, and the transmitting antenna itself.

For the receiver, the desired signal must be selected, while all
others are rejected. This is done primarily by the intermediate fre-
quency (IF) filter. This IF filter is by far the largest contributor to
the total RF bandwidth limitation, typically being less than 300 kHz
wide (3 dB). Some receivers are available with selectable IF bandwidths
of 1 MHz or more. As receiver technology advances, this typical IF band-
width of less than 300 kHz may very well increase. In any case, broad-
casters should not allow receiver shortcomings to limit their efforts to
transmit the best possible RF signal.

There is a wide diversity of opinion among both broadcasters and
broadcast equipment manufacturers as to the required RF bandwidth for
quality FM transmission. At first glance, the "more is better" assump-
tion is likely to prevail. But a closer look reveals some practical
considerations which show a need to limit the transmission bandwidth to
reduce other problems, especially the ever increasing potential for RF
intermodulation in broadcast transmitters.

Therefore, the purpose of this paper is to determine how much band-
width is required for low distortion FM transmission, and at what band-
width the point of diminished returns regarding distortion improvement
is reached.
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Bandwidth Limitations

Several factors contribute to limit the transmitted RF bandwidth of
an FM transmission facility. Often, the limiting factor is the antenna
system itself. For community tower applications, wideband panel anten-
nas are available. In this case, the hybrid combiners and cavity tuned
filters are predominantly the narrowest elements in the transmission
path.

The transmitter also plays a role in the total RF bandwidth of a
station. Several key areas determine the bandwidth limitations of a
transmitter.

A solid state broadcast transmitter is rarely the limiting factor
for RF bandwidth. It should be much wider than the antenna, combiners
or cavity tuned filters. For tube transmitters the story is much more
complex. The output of a high power tube transmitter consists of a fre-
quency selective network in the form of a tuned cavity. The bandwidth
of the cavity depends on its construction, the amount of tube output
capacitance, and how heavily it is loaded.

The output (cavity) bandwidth is often considered the limiting
factor for the whole transmitter. 0ddly enough, this is not the case
for the grid driven amplifier. The large grid input capacitance of a
power vacuum tube causes the loaded Q of the grid circuit to be even
higher than the output (1), (2). This fact is often ignored because the
grid is driven into saturation which partially masks the amplitude varia-
tions of the grid matching network. The popular method of measuring
transmitter bandwidth with a network analyzer is somewhat misleading,
since the measured 3 dB amplitude bandwidth does not completely account
for the grid circuit effects due to saturation. The non-linear response
of the power tube further effects the response, especially close to the
carrier frequency. This is why accurate predictions of the transmitter
3 dB bandwidth cannot be made by looking at synchronous AM performance,
or visa-versa. The amplitude response of the transmitter can be made
flatter over a 75 kHz deviation from carrier due to heavy saturation,
heavy loading, and tube impedance non-linearity (3), (4). Measuring this
“0.1 dB" bandwidth (-45 dB synchronous AM) proves to be inaccurate when
attempting to predict the 3 dB bandwidth from this information. For a
properly adjusted transmitter, the synchronous AM performance tends to
predict a wider than actual 3 dB bandwidth.

Audio performance is also not completely predictable from a meas-
ured transmitter amplitude response. The problem arises from the group
delay variations (phase response) of the grid circuit and the non-linear
nature of the final tube, which can have serious effects on the distor-
tion performance of the entire transmitter. Group delay variations de-
grade the composite amplitude response, which in turn limits stereo
separation. A properly designed, broadband grid matching network is
essential for proper operation of the entire transmitter. Even if the
output bandwidth were not limited, the grid circuit could seriously af-
fect the transmitter's performance.



This degradation due to phase response is true for any tuned cir-
cuit, even if that stage is run into saturation. Therefore it makes
sense to eliminate as many tuned stages as possible. This is why a
wideband, solid state exciter and intermediate power amplifier (IPA) are
advantageous in high power FM transmitters, even though the output stage
uses a tube (1), (2).

WHY LIMIT BANDWIDTH?

¥

If there were only one radio signal being transmitted at any given
time, there would be no need to 1imit the bandwidth. However, any time
two signals are present, there exists the possibility of RF intermodula-
tion between them. All that is required is a non-linear device acting
as a mixer, which creates two more intermodulation products. The trans-
mitter final amplifier is that non-linear active device. If any other
frequency finds its way back into the output stage, RF intermodulation
will occur. This mixing will have some conversion loss, referred to as
"turn-around-loss". There are three main contributors to the total turn-
around-loss (5). They are:

1. The in-band conversion loss of the non-linear device.

2. The attenuation of the interfering signal due to the selectiv-
ity of the output stage.

3. The attenuation of the resulting IM products due to the selec-
tivity of the output stage.

Notice that 2. and 3. relate to the transmitter output bandwidth.
This clearly shows the desirability to have as much selectivity as pos-
sible in the output stage. This will be a design trade-off between sys-
tem modulation performance and immunity from RF intermodulation. It is
important to note that the broadband nature of a solid state broadcast
transmitter makes its susceptibility to RF intermodulation greater than
a tube/cavity output stage.

Broadcast engineers are faced with the following questions:

1. What is the optimum bandwidth for FM transmission?

2. At what point does the performance become acceptable?

3. What is the limit of diminishing returns where you pick up

basically no more modulation performance, but continue to
"open up the door" to increased RF intermodulation?



TESTING RF BANDWIDTH PERFORMANCE

How 1is the optimum bandwidth determined? There are models available
(6),(7) to predict distortion performance, but these require that the
transfer function of the network is known and assumed to be passive. It
is practically impossible to model an FM broadcast transmitter operating
class C, due to its nonlinear transfer functijon.

A straightforward empirical alternative is to measure the perform-
ance degradation of a "perfect" modulator when it is passed through a
passive band limiting network. A real broadcast transmitter is not prac-
tical for this test, as there is only a very limited range of bandwidth
variation ava11ab1e, and determ1n1ng its true bandwidth is difficult due
to grid saturation effects.

A test cavity was constructed to simulate the effects of band 1im-
iting. The tuning and loading range was sufficient to allow bandwidth
testing from 400 kHz to 3 MHz (-3 dB). While the effects of the grid
circuit were not seen, the output bandwidth effects were very accurately
modeled. This was useful for several reasons. First, it showed the
performance degradation caused by various bandwidth limitations. Second,
it shows at what bandwidth performance ceased to improve. Third, it
provides a good basis to compare to a real broadcast transmitter. Fig-
ure 1 shows the physical construction of this test cavity.

The resulting data gives a clearer insight into the effects of the
grid circuit and the non-linear effects of the output tube, based on
actual performance vs. measured bandwidth of a real transmitter. It also
shows that 3 dB bandwidth is not necessarily a good measure of synchron-
ous AM performance due to the more complex response of the entire trans-
mitter design.
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FIGURE 1. TEST CAVITY CONSTRUCTION



The Test Equipment

Before a determination of performance degradation can be made, a
benchmark must.exist to define the desired goal, or "perfect" FM modula-
tion. In a wideband RF environment, the system performance is limited
only by the FM exciter used (the modulator), and the receiver (demodula-
tor). The accuracy of the test is limited by the distortion, noise, and
composite amplitude response of this test equipment.

Figure 2 shows the performance of the Broadcast Electronics, Inc.
model FX-50, 50 watt FM Exciter, measured with the Belar Electronics
model FMM-2 FM Modulation Monitor and model FMS-2 FM Stereo Modulation
Monitor. Audio generation and measurement was done with the Audio Pre-
cision System One audio test set. Stereo encoding was accomplished with
the Broadcast Electronics model FS-30 FM Stereo Generator.

This combination provided a guaranteed signal to noise ratio of -90
dB minimum, THD+N, SMPTE and CCIF IMD performance better than 0.005%,
composite amplitude response of better than *0.025 dB, composite phase
response of +0.1 degree, and stereo separation of 60 dB, 30 Hz to 5 kHz,
greater than 52 dB, 5 kHz to 15 kHz.

The Test Setup

Figure 3 shows the setup used to test the performance degradation
of the FX-50 Exciter caused by various bandwidth restrictions. The Audio
Precision System One test set was used to measure the audio performance.
This allowed a very complete and consistent set of data to be compiled
for each bandwidth test.

The System One audio oscillator fed either the FS-30 stereo genera-
tor for the stereo performance tests, or the FX-50 composite input
directly for the baseband composite performance tests.

The output of the FX-50 was connected to the variable bandwidth
test cavity. The cavity was adjusted for the desired -3 dB bandwidths
of 400 kHz, 600 kHz, 800 kHz, 1 MHz, 1.5 MHz, 2 MHz, and 3 MHz. Figure
4 shows the amplitude and group delay responses of the test cavity at
each setting.

The cavity was loaded by a 50 ohm, 20 dB attenuator, and a sample
was connected to the FMM-2. The de-emphasized audio and wideband com-
posite outputs were used for the composite tests. The composite base-
band was also used to drive the FMS-2, and the Tektronix model 7L5 spec-
trum analyzer. The decoded left and right outputs of the FMS-2 were
used for the stereo performance tests.
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FIGURE 2. FX-50 FM EXCITER PERFORMANCE DATA
(Sheet 1 of 3)
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FIGURE 2. FX-50 FM EXCITER PERFORMANCE DATA
(Sheet 2 of 3)
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PERFORMANCE DATA

Figure 5 - S&nchronous AM

Figure 5 shows the synchronous AM performance of the test cavity,
adjusted for the various bandwidths. Very close correlation between test
results and computer modelling of predicted synchronous AM performance
was obtained (3). This is because the band limiting network is com-
pletely passive, and can be accurately modeled.

Based on this data, better than 40 dB of synchronous AM should be

achieved with only 800 kHz of RF bandwidth. This passive representation
is only an approximate method of predicting synchronous AM performance.

Figure 6 - Asynchronous AM

Figure 6 confirms that there is-no change in Asynchronous AM signal
to noise ratio with bandwidth.

Figure 7 - Composite Frequency Response

A dramatic degradation in composite frequency response occurs below
600 kHz. Above 800 kHz to 1 MHz, very little improvement in response is
seen. The effects of this parameter are more clearly illustrated by the
stereo separation tests. -

Figure 8 - Composite THD+N

Figure 8 shows the rise in THD+N with frequency as the bandwidth is
varied. With more than 600 KHz bandwidth, the THD+N is better than
0.1%, 30 Hz to 15 kHz.

There is virtually no improvement in performance above 1.5 MHz
bandwidth, as shown in the second graph.

Figure 9 - Composite SMPTE IMD

Even at 400 kHz bandwidth, SMPTE IMD is better than 0.1% (méasured
at 0.05%), and crosses the 0.01% mark at 1 MHz RF bandwidth.

This test is actually SMPTE IMD vs. Level, which shows the. IMD per-
formance from 10 dB below 100% modulation to 3 dB above 100% modulation.
SMPTE IMD is specified at 100% modulation (@ dBr the horizontal axis of
Figure 9A and 9B).

-10-
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FIGURE 9

Figure 10 - Composite FM Signal to Noise Ratio

As expected, no change in composite FM signal to noise ratio was
observed as bandwidth was varied.
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Figure 11 - Composite CCIF IMD

Surprising results were obtained during this test. Figure 11 shows
little change in CCIF IMD performance as bandwidth is varied. Upon
closer examination, it was found to be because the test tone is comprised
of equal amplitude components, which keeps the individual modulation in-
dexes low, thereby reducing the bandwidth required for low distortion.

Figure 12 - Composite DIM/TIM

There 1is virtually no change in DIM/TIM performance vs. bandwidth.
In fact, the FX50 measurement of 0.008% turns out to be noise limited.
No IM products could be found by spectrum analysis.
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FIGURE 11 FIGURE 12

Figure 13 - Stereo SMPTE IMD

The stereo SMPTE IMD performance is better than 0.05% with 600 kHz

or more bandwidth. Very little improvement is noticed above 1 MHz band-
width.
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FIGURE 13
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Figure 14 - Stereo THD+N

There is practically no improvement above 1 MHz bandwidth, with
better than 0.1% performance, even at the 600 kHz mark.

Figure 15 - Stereo FM Signal to Noise Ratio

As expected, there was no change in stereo signal to noise ratio
with bandwidth.

Figure 16 - Stereo Frequency Response

Stereo amplitude response is not effected with at least 400 kHz of
RF bandwidth.

Figure 17 - Stereo Separation

This is an excellent example of the bandwidth effect on composite
frequency response. At 400 kHz, separation is limited to slightly better
than 40 dB, crossing the 50 dB performance mark at about 700 kHz band-
width., Stereo separation reaches the 60 dB mark at about 1.5 MHz, and
actually measures better at 3 MHz, left into right, than it does with
the full bandwidth. This is due to the small errors adding in one chan-
nel while subtracting in the other.

Figure 18 - Stereo CCIF IMD

Excellent Stereo CCIF IMD performance was achieved with at least
600 kHz RF bandwidth.

Figure 19 - Composite Baseband Spectrum Analysis

Spectrum analysis shows the distortion products generated with each
bandwidth tested. The test was with 4.5 kHz single channel modulation.
This produces several distortion products throughout the SCA frequency
range. At 800 kHz bandwidth and above, all distortion products are more
than 80 dB below 100% modulation.

A REAL TRANSMITTER

Figure 20 shows the performance curves for the Broadcast Electronics
model FM-20B. The data shown is representative of the entire "B" series
of transmitters from Broadcast Electronics.

The FM-20B is a 20 KW broadcast transmitter using an Eimac 8989/
4CX12,000A final tube in the patented folded half-wave cavity found in
all Broadcast Electronics single tube transmitters.

-
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FIGURE 19. BASEBAND DISTORTION PRODUCTS vs. BANDWIDTH
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FM-20B 20kW TRANSMITTER PERFORMANCE DATA

(Sheet 1 of 3)
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FIGURE 20. FM-20B 20kW TRANSMITTER PERFORMANCE DATA
(Sheet 2 of 3)
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The FM-20B also uses a patented broadband grid matching network to
minimize the signal degradation caused by the grid circuit.

Figure 21 shows the actual measured bandwidth of the FM-20B. Notice
that with the transmitter properly tuned for minimum synchronous AM,
there is about a 1 dB difference between the upper and lower sidebands

at £700 KHz, respectively.

This is perfectly normal and is due to the

nature of a bandpass filter, which is symmetrical at the geometric upper
In other words, the attenuation below center
frequency is the mirror of the attenuation above center frequency when
plotted on a logarithmic frequency axis, not a linear axis (11).

and lower frequencies.
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FIGURE 21

The second plot shows where the £700 KHz points are symmetrical
(-3 dB). The arithmetic mean (linear axis) center frequency is 78 KHz
higher than the actual tuned frequency of the transmitter, but does show
the 3 dB bandwidth to be 1.4 MHz.

The measured bandwidth and audio performance of the FM-20B do not
exactly match the predictions based entirely on the passive band limiting
tests, as expected. Slight variation is due to the non-linear input and
output characteristics (transfer function) inherent to a class C tube
power amplifier and matching networks.

The audio performance is excellent, with THD+N better than 0.01% at
400 Hz, with less than 0.1% at 15 kHz, SMPTE IMD better than 0.01%,
greater than 54 dB stereo separation, and 92 dB signal-to-noise ratio,
all with a -3 dB bandwidth of less than 1.5 MHz.

Also, as stated earlier, the synchronous AM performance is better
than would be predicted from the measured 3 dB bandwidth.

CONCLUSIONS

The accurate prediction of actual audio performance from measured
RF bandwidth is a difficult task due to the masking effects of the grid
circuit and non-linear nature of the output stage in a single tube trans-
mitter. Carefully controlled testing of RF bandwidth limitation by a
passive network tends to show acceptable performance with as little as
800 kHz bandwidth, and little, if any, improvement with more than 1.5 MHz
bandwidth.

This premise is verified by actual tests on a typical, real world
FM broadcast transmitter of less than 1.5 MHz bandwidth.
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Therefore, it is concluded that good audio performance can be
achieved with as little as 800 kHz bandwidth, and that with 1.0 to
1.5 MHz bandwidth, excellent audio performance results are obtained,
gaining only slight improvement above 1.5 MHz. This optimum bandwidth
will produce outstanding audio fidelity with maximum protection from RF
intermodulation potential.
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