McMartin ### 5500 Watt FM TRANSMITTER | | • | |---------------------------------|-----| | INSTRUCTION MANUAL | pag | | I. TECHNICAL SPECIFICATIONS | 1 | | II. GENERAL DESCRIPTION | 1 | | III. INSTALLATION | 2 | | IV. OPERATION | 6 | | V. DETAILED CIRCUIT DESCRIPTION | 7 | | VI. REMOTE CONTROL | 10 | | VII. MAINTENANCE | 10 | | VIII. PARTS LIST | 11 | | WARRANTY | 13 | | IX. SCHEMATIC DIAGRAMS | 14 | | X. APPENDIX A (8-910Manual) | * | | | ^ | * following Schematic Otagrams ### INTRODUCTION WARNING: Voltages and currents in this equipment are dangerous. Installation, operation, and servicing of this equipment must be performed only by properly licensed, trained, and experienced personnel. McMartin Industries cannot be responsible for Injury or damage resulting from improper installation, operation, or servicing of this equipment. Always disconnect primary power before opening doors, covers, enclosures, panels, or shields. Always use grounding sticks to short out high voltage points before servicing. Never gerform service on this equipment when tired or alone. It is most important that all units be bonded together with at least 3" wide copper strap which is securely connected to the MAIN STATION GROUND. Heat and dirt are the main destroyers of good equipment. Keep yours clean and cool, and you will be rewarded by long, reliable service. Preventative maintenance is far more desireable than that done only when absolutely necessary. Follow good engineering practice in everything you do in connection with the operation of this equipment. CAUTION: If your transmitter is supplied for use on 3 phase primary power, it is extremely important that you are provided with service from a closed-delta source. Check this with your local power company. ### Minimum Unrestricted Air Flow Required for McMartin AM & FM Transmitters | | FM | | вти'ѕ | |---------|------|---|---------------| | Model | CFM | | Heat Output | | 8F-55K | 5000 | | 170000 | | 8F-25K | 2500 | • | 9 0000 | | BF-10K | 2000 | | 62000 | | 8F-5K | 1000 | | 38000 | | 8F-3.5K | 1000 | | 20500 | | 8F-1K | 800 | | 6800 | | | AM | | | | BA-10K | 1500 | | 44200 | | BA-SK | 1500 | | 24480 | | EA-2.5K | 500 | | 23000 | | 5A-1K | 800 | , | 10880 | Ample air intake capacity to the building must be provided and the air discharge system from the building must be sufficient so that no restriction or back pressure exists. It is recommended that an exhaust fan of at least the same CFM, as that shown for the transmitter, be installed in the building air discharge system. | I. TECHNI | CAL SPECIFICATIONS | AUDIO
INPUT
LEVEL | +10, <u>+</u> 2, d8m | |--------------------------|--|-----------------------------------|---| | | | AUDIO | | | OPERATING
RANGE | | FREQUENCY | • | | DAMAGETTE | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT | RESPONSE | ±0.75 dB, 30-15000 Hz, Std. FCC 75 usec, preemphasis | | RF POWER | # 600 | | each channel | | OUTPUT | 5,500 watts maximum | | | | RF OUTPUT | | TOTAL
HARMONIC | • | | IMPEDANCE | 50 ohms | DISTORTION | 0.5% or less, 30-15000 Hz | | | (termination EIA 1-5/8"
flange) | | | | | nange) | STEREO
SEPARATION | 05 45 | | CENTER | • | SEPARATION | 35 dB or greater, 50-15000 Hz | | FREQUENCY
STABILITY | ±500 Hz | FM NOISE | 60 dB or greater below | | | | | 100% modulation | | MODULATION | ±150 Hz | PILOT | | | CAPABILITY | | STABILITY | ±1.0 Hertz over rated | | AUDIO INPUT | • | | temperature range | | IMPEDANCE | 600 ohms, balanced | SUBCARRIER | | | AUDIO INPUT | • | SUPPRESSION | 55 dB or greater | | LEVEL | +10,±2, d⊟m | | grounds | | | | CROSSTALK | | | AUDIO
FREQUENCY | | (L+R to L-R, | . 40 40 as assess but | | RESPONSE | <u>±</u> 0.75 dB, 30-15000 Hz | G-H to ETH) | 42 dB or greater below 90% modulation | | | (Std. FCC 75 usec | | oo a modulation | | | preemphasis) | | | | TOTAL | | (with 8-11: | A OPERATION
3 SCA Generator Module) | | HARMONIC | 0.0% of lane 20.15000 Hz | | our deligiator module, | | DISTORTION | 0-3% of less, 30-15000 Hz,
100% modulation | AUDIOL | | | | | INPUT | COO about to be a sent | | FM NOISE | 65 dB below 100% modu- | IMPEDANCE | 600 ohms, balanced | | | lation (400 Hz) | AUDIO | | | AM NOISE | 55 dB below carrier level | INPUT
LEVEL | +10, ±2, dBm | | | | | | | POWER REQUIREMENTS | (.208)230/240 Vac. 50/60 Hz, | CARRIER | | | TIE AND LINE TO THE | Single phase, or | FREQUENCY | 41 or 67 kHz standard (others available on request) | | | 208/230/240 Vac, 3-phase | | (ouncid available off feduest) | | POWER | 3Ø standard | CARRIER | | | CONSUMPTION | | STABILITY | ±500 Hz | | (Approx.) | 3500 watt output, 7,200 watts | MODULATION | • | | • | 4500 watt output, 10,000 watts | CAPABILITY | ± 7.5 kHz | | | → 5000 watt output, 11,250 watts 5500 watt output, 12,500 watts | PREEMPHASIS | 150 usec standard, 50 or | | ***** | The state of s | | 75 usec available on request | | OPERATING
TEMPERATURE | 00 to 500 Celsius | FREQUENCY | | | | | RESPONSE | ±1.5 dB, 50-5000 Hz | | ALTITUDE | 7,500 feet above mean | | 111111111111111111111111111111111111111 | | | sea level | CROSSTALK | | | MECHANICAL | 34.5"W 78.5"H 31"D | (main to sub,
sub to main) | | | | (87.6 X 199 X 78.7 cm)
Rear Door Swing 30'' (78.2 cm) | | THE PERSON NAMED OF TORREST | | • | Hear Door Swing SU (76.2 cm) | DISTORTION
(50-5000 Hz) | 0.75% as less with 1.5 autous | | WEIGHT | | (35-3000 Hz) | 0.75% or less with LP output filter, 2.5% or less with BP | | TWICH | McMartin beige w/woodgrain | • | output filter | | FINISH | McMartin beige w/woodgrain
trim | S/N NOISE | 60 dB or greater | | | | erster distin de erree | greater | | STE | REO OPERATION | | | | | -110 Stereo Assembly) | H CENE | DAI DESCRIBTION | | 9-10 g | | H. GENE | RAL DESCRIPTION | | | | | | | AUDIO | · | | transmitter is designed for FM |600 ohms balanced, each channel The McMartin BF-5K transmitter is designed for FM broadcast service, operating on a specific frequency in the range of 88.0 to 108.0 MegaHertz. IMPEDANCE.... The BF-5K utilizes the Model B-910 solid-state FM exciter. Full technical details pertaining to the B-910 operation are contained in Appendix A of this manual. The RF output of the exciter is used to drive an intermediate power amplifier (IPA) stage which employs parallel-connected type 4CX250B radial beam power tetrode tubes. This stage in turn provides RF excitation to a single type 3CX3000/A7 high-mu, zero-bias triode tube in the power amplifier (PA) stage. The PA stage operates as a Class C amplifier, in a grounded-grid configuration. A low-pass RF filter mounted within the cabinet enclosure attenuates harmonically-related frequencies at the transmitter output termination. A single high-voltage power supply provides plate voltage for the PA and IPA stages. A separate power supply provides IPA screen voltage which is adjustable by means of a motor-driven power output control from the front panel. Independent transformers provide filament voltages to the PA and IPA tubes, with a front panel FILAMENT ADJUST control. inasmuch as the PA tube is a high-mu power triode specifically designed for zero grid bias, its operation in a grounded-grid mode eliminates the need for screen grid and grid bias power supplies. This permits great simplification of circuitry. Interlocked control logic permits straightforward pushbutton control of all start-stop functions. These, plus telemetering samples are terminated for interconnection to remote control systems. Automatic recycling and a memory-type LED status indicator assembly senses and indicates the cause of carrier interruptions, specifically in the event of exciter RF output, IPA or PA failure, high voltage overload or or excessive VSWR. The automatic recycling sequence consists of two pulses spaced approximately one-second apart, followed by an adjustable time interval from 3 to 20 seconds after which the
two pulses are repeated. If the fault still persists, the recycling sequence is temminated. An "overcount", as well as the source of the fault is shown on the indicator panel LED, If anywhere in the recycling sequence, the transmitter is restored to normal operation, the LED indicator associated with the fault remains on until the manual RESET switch is depressed. Adequate cooling is provided by maintenance of positive cabinet pressure. The airflow routing is through the shielded IPA compartment and upward through the PA shielded enclosure. The airflow is provided by means of a rugged, permanently-lubricated, centrifugal blower, shock-mounted on the base of the transmitter cabinet. Its outlet is ducted to the bottom of the IPA enclosure. Supplemental cooling for power supply components is provided by a small exhaust fan located in the top of the cabinet. Air entering the transmitter is filtered by dual, maintainable flitars mounted on the rear door of the cabinet. The rear door opaning is protected with dual mechanical interlock switches, one of which defeats the high-voltage control circultry. The other shorts the high-voltage plate power supply to ground. An insulated "grounding stick", located just inside the cabinet at the door opening is also provided. ### III. INSTALLATION #### 3.1 PLANNING It is recommended that the manual be studied in its entirety prior to final installation of the BF-5K. A full understanding of the controls, circuitry and input and output terminations will assist in the preplanning stage. Figure 1 is an outline dimensional drawing of the transmitter. Provide adequate clearances for access to the transmitter through the rear. Preplan the location of the entrances for power, audio/remote control cable hamessing, external monitoring coaxial cable feed and the RF output connection to the coaxial transmission line. The BF-6K output termination is by means of an EIA 1-5/8" flange. This flange with a short section of 1-5/8" rigid line mates with an ungassed field coupling clamped to the output of the harmonic filter. These coaxial line components are packed separately and should be assembled to ascertain the precise physical location of the output termination. Although cable entrances may be made through either the top or bottom of the cabinet, the preferred arrangement for ease of installation is through the bottom entrances to the cabinet for all interconnections except the output coaxial transmission line. #### 3.2 UNPACKING Inspect the unit for damage which might be incurred during shipment. Particularly note condition of knobs, meters and ceramic insulators. Inspect painted surfaces for dents or scratches. If damage is detected, immediately notify the carrier and advise McMartin of steps you have taken. The tubes will normally be packed separately, install these in their respective sockets. ### 3.3 EXTERNAL CONNECTIONS All external connections are made from the rear of the cabinet. (Directions given below, right or left, are based on rear view access.) ### 3.3-1 RF Output The RF output termination is an EIA standard 1-5/8" coaxial end flange located at the top of the RF harmonic fliter. The external coaxial line run should be terminated to this coupling. The external line should be secured so that excessive lateral or vertical pressure is not exarted on the output termination. The coaxial line output components are packaged separately and should be assembled prior to connection of the external transmission line. ### 3.3-2 Audio Input The audic input termination strip is located at the lower left of the cabinet. Jacketed, two-conducter shielded cable should be used. Monaural or left-channel stereo input should be connected to TB-12(3 & 4). Right-channel audic input should be connected to TB-3 (6 & 7). If SCA operation is used, the SCA audic input should be connected to TB-3 (1 & 2). Shield grounds should be made to TB-3 (5 or 8.) ### 3.3-3 Monitor Connections The RF drive for FM frequency and/or modulation monitoring equipment may be taken from either of two terminations, each of which are of the BNC type. One of these is located directly above the main housing of the RF output filter. This is a fixed-probe type pick-off point. The other is located on the left side of the PA enclosure adjacent to the coaxial feed to the RF harmonic filter input port. This is the termination of a pickup loop which may be mechanically oriented in relation to the PA output connection to the filter. This loop is readily accessible for adjustment by opening the rear door of the PA stage compartment. The coaxial cable from the pick up point is terminated on TB-2 (5 & 6); #5 ground. The external cable should be of the flexible coaxial type. DIMENSIONS IN () GIVEN IN CENTIMETERS BACK VIEW FIG. I FIGURE 1 . DIMENSIONAL OUTLINE FIGURE 2 * REMOTE CONTROL TERMINAL BLOCKS #### 3.3-4 Power Connections The transmitter will be equipped for either single-phase or three-phase primary power operation; whichever is specified in your order. In either case, before connecting to the power source, consult with your local utility company as to the nominal voltages available at the transmitter site. ### A. Single Phase Model Four-wire service entrance cable with minimum #8 wire size should be used. The ground lead should be secured to the ground terminal adjacent to TB-10(located at the rear of the cabinet). Neutral lead should be connected to TB-10(7) and the remaining conductors to TB-10(8 & 9). #### B. 3-Phase Model Refer to the schematic diagram for interconnection of three-phase service. This version differs from the single-phase model only in the primary wiring for the plate transformer and the rectifier-stack arrangement. #### 3.4 REMOTE CONTROL CONNECTIONS If the BF-6K is to be operated from a remote point, additional interconnection is required to TB-13. See Figure 2 for terminal board identification. The following functions may be controlled: - 1) Start - 2) Stop - 3) Power output The following functions may be metered: - PA plate voltage - 2) PA plate current - Power output or reflected power #### 3.5 INITIAL TUNE-UP PROCEDURE The BF-5K is now ready for initial tune-up. The transmitter has been factory tested and tuned to your specified operating frequency and nominal output power level. These factory tests include operation into a 50-ohm non-reactive load; therefore all tuning control adjustments will approximate those you will encounter in the following tune-up procedure. At this time you should calculate the exact transmitter output power you will require to satisfy the effective radiated power (ERP) specified in the station construction permit or license. This will be equivalent to the ERP, divided by your antenna power gain, plus losses incurred in the transmission line feeding the transmitter output to the antenna terminations. As a guide for various power output operating levels, the following tabulation will be helpful in evaluating typical operating parameters for the PA output stage. | TABLE I | | | | | |---------------------------------------|-------|-------|-------|-------------| | Power output: | 3,500 | 4,500 | 5,000 | 5,500watts | | PA Plate Voltage: | 4.1 | 4.6 | 4.6 | 4.8 KV | | PA Plate Current: | 1.1 | 1.25 | 1.35 | 1.95 A | | PA Cathode (Grid &
Plate) Current: | 1.8 | 1.75 | 1.8 | 1.9 A | | PA Power Input: | 5,060 | 5,750 | 6,210 | 6,960 watts | | Efficiency: | 69 | 78 | . 80 | .79 % | Precise PA efficiencies for your operating frequency and power are plotted in Figure 3. The transmitter output power where the indirect output power measurement is employed is the product of PA plate voltage and PA plate current multiplied by the appropriate effeciency factor from Figure 3. Proceed as follows with the tune-up. - 1. Refer to "Appendix A", Section V OPERATION (page 11 of 8-910 instruction Manual) for initial operation of the exciter portion of the BF-5K. - Position the circuit-breaker switches located on left hand side of the horizontal ledge below the exciter to "ON". - Momentarily depress the START pushbutton. START indicator lamp will come on. This will provide primary ac power to the exciter and energize the cabinet blower, exhaust fan and the tube filaments. AIR, Fit.-AMENT, BIAS, and 24 VAC indicator lamps will be # See note on reverse side illuminated. After approximately 2 minutes, PLATE OFF pushbutton will be illuminated. Read FILAMENT VOLTAGE panel meter and set FILAMENT ADJUST control for 7.5 volts. Confirm that correct line voltage is being supplied by operation of LINE VOLTAGE selector switch. (For single-phase installations positions 1 & 2 measure each side of the nominal 230 V supply to neutral; and for three-phase units, positions 3, 4 & 5 measure the voltage across each leg to neutral.) - After completing the exciter tuning procedures, turn the POWER OUTPUT control on the B-910 exciter module completely counterclockwise. - 5. Place MULTIMETER select switch to IPA GRID CURRENT position. Slowly rotate the exciter POWER OUTPUT control until a reading is noted on the multimeter. Adjust IPA GRID control for a peak in the multimeter reading and adjust B-910 POWER OUTPUT control for a reading of 20 milliamperes. - 6. Operate POWER OUTPUT control in LOWER position until motor drive stops. Set MULTIMETER switch to IPA 1 CATHODE CURRENT position. Apply operating voltage to the IPA and PA tubes by momentarily depressing the PLATE ON pushbutton. PLATE ON pushbutton will come on, PLATE OFF lamp will be extinguished. Confirm that PA PLATE VOLTAGE reading is in approximate agreement with the typical PA Plate Voltage Values shown in TABLE I. - 7. Operate POWER OUTPUT control until IPA CATHODE CURRENT reaches approximately 100 milliamperes, Adjust IPA TUNE control for minimum cathode current. At the same time, observe the PA PLATE CURRENT meter, and during following initial adjustments, do not exceed 1.0 ampere. When PA PLATE CURRENT approaches this value, adjust PA PLATE TUNE knob for minimum
PLATE CURRENT and proceed with tune-up of IPA stage. - 8. Alternately adjust IPA TUNE and IPA LOAD controls so as to produce maximum PA PLATE CURRENT reading. There will be interaction between these controls. Whenever a change is made in the IPA LOAD control, readjust IPA TUNE control for minimum IPA 1 CATHODE CURRENT. As an impedance match is achieved between the IPA output and PA input circuitry, the dip in IPA cathode current will become less pronounced. - 9. Place MULTIMETER switch in PA CATHODE CURRENT position. The reading will be somewhat higher invalue than the PA PLATE CURRENT meter reading. The difference in value represents the PA grid current. Operate the POWER OUTPUT control until the PA CATHODE CURRENT is approximately 350 milliamperes higher than the PA PLATE CURRENT READING. - 10. Place REFLECTOMETER meter switch in FWD (forward power) position. Adjust PA TUNE and PA LOAD controls for maximum reading on the REFLECTO-METER, while at all times maintaining PA PLATE CURRENT at minimum as the PA LOADING is increased. Switch REFLECTOMETER switch to REFL (reflected power) position. If the value of reflected power is more than 5% of the forward power, the external transmission line and antenna should be chacked before proceeding further. - 11. Operate POWER OUTPUT control in RAISE position until the PA total plate input concurs approximately with those calculated for proper operating level. - 12. Check IPA operating parameters in the various pertinent MULTIMETER positions. Typical operating parameters for the lpa stage at various transmitter output levels are: | TABLE II | | | | | |-------------------------------|-----|-----|-----|------------------| | Transmitter Output
Levels: | 3.5 | 4.5 | 5.0 | 5.5 KW | | PA Plate Voltage: | 2.0 | 2.0 | 2.0 | 2.0 KV | | IPA 1 Cathode
Current: | 170 | 180 | 190 | 200 milliamperes | | IPA 2 Cathode
Current: | 170 | 180 | 190 | 200 milliamperes | | IPA Grid Current: | 20 | 20 | 20 | 20 milliamperes | | iPA Grld Voltage: | -87 | -87 | -87 | -87 Volts | | IPA Screen
Voltage:* | 150 | 150 | 150 | .150 Volts | | IPA Screen
Current: | 15 | 10 | 10 | 5 milliamperes | ^{*}The setting of the POWER OUTPUT control establishes this voltage. #### 3.6 FINAL TUNE-UP PROCEDURE For optimum overall operating efficiency upon completion of the initial tune-up, readjust IPA tuning and loading until the operating parameters of the Ipa stage approximate the values shown in TABLE II. Adjust PA TUNE and PA LOAD controls to produce the calculated PLATE VOLTAGE and PLATE CURRENT values required to produce the necessary transmitter power output. Plate voltage may be increased or decreased by moving primary power connections located on the power transformer terminal block. These may be changed in 10% steps by this procedure. #### IV. OPERATION The daily operation of the BF-5K is straightforward. Start-up procedure is as follows: - The circuit breaker switches at the left hand side of the horizontal ledge just below the exciter panel should be kept in their ON positions for normal operation. (These are protective devices and are placed in their OFF positions only for safety and convenience during maintenance and servicing of the transmitter). - 2. Depress START button. (START button illuminated) (AIR indicator illuminated) (FIL indicator illuminated) (BIAS Indicator illuminated) (28 Vac indicator Illuminated) After a time delay (adjustable approximately 30 seconds to 2 minutes by knob setting of delay relay K-6), the PLATE OFF pushbutton will be illuminated. Occarding To Charles Goodrich, Gww of mc Martins transmitters, This mansmitter has a revised IPA gru Circuit which results in much lower mornal I Typical IPA Ic is 2-3 MA. 5.A. Kongoka. 1/24/94 Depress PLATE ON button (PLATE ON button illuminated). (PLATE OFF button extinguished). Normal shut-down procedure is as follows: 1. Depress STOP pushbutton. The BF-3.5K will shut-down completely, in the proper sequence. First, the power will be removed from all portions of the transmitter except the cabinet blower. After approximately 2 minutes, this blower will be turned off, completing the shut-down. if during tune-up, or routine maintenance schedules, only the PA plate voltage is to be removed, depressing the PLATE OFF pushbutton performs this function. Filaments, exciter, etc., remain on. ### V. DETAILED CIRCUIT DESCRIPTION Reference to cited drawings will be helpful in understanding the following: #### 5.1 B-910 EXCITER Refer to Appendix A, "Section IV" (pages 4 through 11) of the 8-910 instruction Manual. ### 5.2 IPA STAGE (Ref: Dwg. #000270/1) The RF output of the 8-910 exciter is fed to the IPA stage by means of 50-ohm coaxial transmission cable. An RF matching network comprised of C-12, C-15 (IPA GRID control) and L-21 provides impedance transformation between the exciter and the control grids of the parallelconnected 4CX250B IPA power tubes. Fixed grid-bias for the IPA stage is fed from a separate power supply. Additional operating grid bias is provided by the voltage drop through R-13 and R-15 generated by IPA grid current. The grid voltage is sampled through R-14 and R-48 in parallel for a MULTIMETER reading in the IPA GRID CURRENT position of the MULTIMETER selector switch. The filament voltage for the two 4CX250B tubes is provided by T-3. The primary winding of T-3 incorporates RF filtering L-5 and L-6 in conjunction with C-8 and C-9. Actual filament operating voltage is determined by the setting of the front panel FIL ADJUST control. R-9 and R-10 are mechanically ganged with a similar rheostat control for the IPA and PA stage tube filaments. The individual cathodes of the IPA tubes are RF by-passed to ground. Series resistors R-17 and R-20 in the cathode to ground circuitry generate a metering voltage in the IPA-1/IPA-2 CATHODE CURRENT positions of the MUL-TIMETER select switch. Precise balance of these two parameters is not necessary; however, disparities in excess of 15% will usually indicate aging of one of the tubes. Before replacement, however, it is recommended that the two tubes in use be interchanged in the socket positions. If this procedure indicates that lower cathode current results for the same tube, it should be replaced. Plate supply voltage for the IPA is provided from a full-wave bridge, center-tapped power supply which also provides PA plate voltage. The latter voltage is obtained from the full-wave bridge rectifier D-9 through D-12 configuration; therefore, the IPA supply, led from the secondary center tap of the plate transformer provides a voltage value essentially equal to one-half the PA plate voltage value. The IPA supply is flitered by a conventional, dual choke/capacitance fliter, consisting of L-19, L-20 and C-49, C-50. IPA plate voltage is metered in the IPA PLATE VOLTAGE position of the MULTIMETER selector switch, K-9 series-connected in the IPA cathode ground return, serves as the IPA overload relay. Screen-voltage for the parallel connected 4CX250B tubes is obtained from the rotor of the front panel POWER AD- JUST potentiometer, R-7, which is motor-driven. The raise/lower control relays K-11 and K-13 are operated from the front panel RAISE/LOWER control. This control provides extremely smooth control of the transmitter power output level from essentially zero to full power output. The IPA SCREEN VOLTAGE is metered in the appropriate position of the MULTIMETER switch. The plates of the 4CX2508 IPA tubes are parallel-connected with dc plate voltage fed through L-7, the plate RF choke. C-32 and C-33 serve as RF coupling/plate blocking capacitors. A pl-L network comprised of C-34 (IPATUNE), C-36 (IPA-LOAD), L-9 and L-10 provide proper impedance transformation for coupling the RF power from the IPA stage to the filament of the 3CX3000/A7 PA output stage. ### 5.3 PA STAGE (Ref: Dwg. #000258) L-11 and L-12 (of open line configuration) connected in each leg of the filament supply operate as RF chokes to maintain the filament at RF potential. The end of the lines opposite the filaments are maintained at RF ground potential by C-39 through C-42. Filament voltage is obtained from T-2. The filament voltage of the PA tube is continuously metered by the panel-mounted FILAMENT VOLTAGE METER. This voltage should be maintained at 7.5 volts to insure maximum tube life. The front panel FILAMENT ADJUST control permits maintenance of the prescribed filament operating voltage. The FIL ADJUST control operates R-9, which is a series-resistance element in the primary of T-2. The grid of the PA tube is operated at both dc and RF ground potential. A small amount of fixed bias voltage is generated by the cathode (filament) resistors R-39 and R-40 in the centertap ground return of T-2. The voltage drop across one of these resistors, R-39 appears across K-8, the PA plate overload relay, the sensitivity of which is adjusted by the slider tap position on R-39. This is normally adjusted so that the overload relay will operate when PA plate current exceeds 15% of its normal value at the various power output levels. R-41 develops a voltage drop sample for remote metering of PA plate current. The PA plate tank consists of a shunt shorted-line element, L-15 for PA TUNE and a series shorted-line element, L-16, for PA LOAD. The front panel PA TUNE and PA LOAD controls provide mechanical drives for the positioning of the shorting bar on L-15 and L-16, respectively. Capacitor, L-23 is a shunt-connected inductor which selects the tank circuit, so as to provide a nominally 50-ohm source impedance to the RF harmonic filter input port. The RF harmonic filter, of low-pass configuration, provides a minimum of 65 dB attenuation of all frequencies above the fundamental operating frequency. A front panel REFLECTOMETER permits continuous metering of either relative forward or reverse power, by means of a panel-mounted selector switch. 5.4 CONTROL LADDER/OVERLOAD PROTECTION (Ref: Main Schematic #000270;Overload Protection Assy. Schematic
#550209/1) Operation of the main circuit breakers, CB1, 2, 3 located on the lower panel of the transmitter, connects the primary power service to the BF-5K system. When the Power Supply is energized by operation of the circuit breakers, 28 Vac appears on TB-103, 1 & 2 and 28 Vdc on TB-103/3. These voltages operate the various control ladder functions. +28 Vdc is fed to the Control Ladder Assembly through TB-3 - 1, energizing K-3, a two-minute time delay relay. (Note that in a remote control operation where all priary circuit breakers would normally be left in their ON sitions, the coil of K-3 is energized through the normally-closed 5/6 contacts of K-1 during the standby offair period). Normally-closed contacts 1/7 of K-3 energize the FAN/Fil contactor K-3, starting the blowers. A momentary closure of START switch energizes START relay, K-1. Contacts of K-1 initiate the following functions: - 1. Contacts 9/10 latch K-1 in its ON position. - Contacts 5/6 open; defeating K-3, the two-minute delay FAN/FIL "SHUTDOWN" relay. - Contacts 6/7 close, supplying 28 Vdc to the balance of the Control Ladder Assembly circuits, as well as START indicator lamp. As the blowers start, the air flow pressure sensor switch closes. These closures turn on the AIR indicator lamp, and energize the coil of relay K-5 the FILAMENT control relay, closing contacts 6/9 and 4/7 of K-6. The 6/9 closure energizes T-2 the PA filament transformer. The simultaneous 4/7 contact closure of K-5 applies 28 Vdc to the "plate ready" timing/control circuitry consisting of Q-1, Q-2, and K-4. The time delay of K-4 operation is determined by the approximately 15-second time constant of the RC combination, R-2 (82K-ohms) and C-2 (47 mfd). As the 4/7 contact closure occurs, C-2 begins to charge through R-2 and the base-emitter function resistance of Q-1. This charging current mains Q-1 in its "on" state, which through the voltages 18 Q-1 in its "on" state, which through the voltage cop produced by Q-1 collector current through R-3, keeps Q-2 "off" by holding Q-2 base voltage close to the Q-2 grounded-emitter value. When C-2 reaches the nominal +28 volt value, Q-1 base and collector current ceases, increasing Q-2 base voltage and collector current, energizing K-4 series connected in the Q-2 collector circuit. The K-4 operation closes contacts 9/10. If the rear door is secured, the interlock switch is closed. The thermal switch is a 250°F sensor located in the output air plenum of the PA stage and is normally closed. Thus +28 Vdc is fed through the 9/10 contacts of K-4, and 7. This energizes INTERLOCK indicator, LM-3 and through normally-closed contacts 14/15 of K-7, the PLATE OFF indicator lamp. When K-7, the PLATE ON relay, is energized by a momentary closure of the PLATE ON switch, the following occur: - K-7 is latched "on" by contacts 12/13. - Contacts 14/15 open, extinguishing PLATE OFF indicator lamp. - Contacts 15/16 close, energizing PLATE ON indicator lamp. - 4. Contacts 9/10 close, applying +28 Vdc through the Overload Protection Assembly to the coil of relay K-10. (The plate contactor) ### 5.5 POWER SUPPLY"(Raf: Dwg. #000258) Plate voltages for both the PA and IPA stages are provided by a single power supply, which will have either single- or three-phase primary power source; as ordered. The primary winding of the plate transformer, T-1, is designed to provide secondary voltages of 4 KV or 5 KV, ±10%, at three basic input line voltage values of 208, 220 or 240 Vac. These primary winding taps permit 18 selections of transformer secondary voltages by use of the appropriate primary taps. The secondary center tapped winding feeds a full wave bridge silicon rectifier stack consisting of D-9 through D-12. The rectified PA high voltage is filtered by a dual section LC filter (L-17, L-18, C-47 and C-48), R-24 is the bleeder load for the PA plate supply. Plate voltage metering is provided by the front panel PLATE VOLT-METER. The meter multiplier resistor string for this meter consists of R-30 through R-34. The IPA plate voltage is derived from the center-tap of the T-1 secondary winding and is filtered by L-19; L-20, C-49 and C-50. The IPA screen voltage is obtained from a combination bias/screen supply consisting of T-4, D-1 through D-4. Filtering of the positive screen voltage is provided by L-1 and C-4. The screen voltage applied to the IPA screen grids is adjusted by a front-panel, motor driven control, R-7. Grid bias voltage for the IPA stage is derived from the same power supply. The bias voltage is filtered by R-4/R-5 and C-3/C-5. ### 5.6 OVERLOAD PROTECTION/STATUS INDICATION (Ref: Dwg. #550209/1) The Overload Protection Assembly provides the sensing of overload conditions in the DRIVE and PA stages as well as abnormal VSWR load conditions. Relays K-18, K-19, K-20, and K-21 respectively sense VSWR condition, Exciter phase lock, PA plate current and IPA cathode current. The sampling voltages are preset to produce relay operation when the currents exceed normal value by approximately 15%. Note: The exciter status light will remain on when the transmitter is off, If the exciter is operated from Internal AC from the transmitter. The LED indicates the exciter is out of phase lock or has been out of phase lock. When an overload condition occurs so as to actuate K-18 through K-21, the 12/13 and 6/7 sets of contacts of the appropriate relay close. The 6/7 contacts trigger the appropriate SCR (A-7 through Q-10). The front panel light emitting diode (LED-1 through LED-4) is energized when its associated SCR triggers and latches. The normally-closed secondary contacts of the PLATE OFF pushbutton, SW-9A Interrupt the anode returns of Q-7 through Q-10 providing manual reset of LED's only when SW-9A is depressed. The closure of any of the sets of 12/13 contacts applies +28 Vdc to the balance of the time delay switching circuits and simultaneously energizes K-17, opening normally-closed contact sets 8/9 and 14/15 across TB-6, 1 & 2. As these contacts open, relay K-10, PA plate contactor is deenergized taking the transmitter off the air by removing high-voltage from the IPA and final stage. The control voltage for K-18 operation is provided from the VSWR Detector Assembly (Dwg. #550204/1). An LM-322 (IC-1) is used as a non-inverting voltage comparator. A sample of the positive reflected voltage from the Reflectometer is fed through terminal 5, through timing network C-2, C-3, and R-1 to the R/C input of IC-1 (pin 5). The trigger voltage point for IC-1 is established by the setting of R-2. Where the "reflected" voltage exceeds the pre-set value, K-1 in the output collector circuitry of IC-1 (pin 12) is energized, closing the relay contacts across terminals 6 and 8. This applies +28 Vdc to relay K-18 of the Overload Protection Assembly, which, as explained above, removes IPA and PA high voltage, fires LED-1 and applies +28 Vdc to the balance of the Overload Protection Assembly timing circuits. A one-second time delay circuit (Q-3, Q-4, and K-15) is energized. K-15 is latched "on" by its 12/15 contacts in series with K-16 contacts 8/9 and the normally-closed O/L RESET contacts of the PLATE ON pushbutton witch. After approximately one second, K-14 is energized. Its normally-closed contacts 8/9, upon opening, deenergize K-17 which restores the PLATE ON condition. Simultaneously, contacts 9/10 of K-14 close, preparing the Q-1, Q-2, K-13 circuit for a second overload condition. NOTE: When K-15 was energized by the initial overload, its contacts 9/10 energized the 30-second timer circultry (Q-5, Q-6, and K-16). This timer will clear the system if no subsequent overloads occur within 30 seconds after the initial overload occurence. If a second overload does indeed occur during the 30-second period, K-18 again closes. Its 12/13 contacts again apply +28 Vdc to K-17, removing plate voltages and the one-second timer circuits (Q-1, Q-2, K-12) repeat their cycle, ultimately deenergizing K-17 again, which reapplies high voltage to the IPA, ORIVER and PA stages. if a third overload occurs within the 30-second period, K-18 operation again deenergized K-17, placing the transmitter in its PLATE OFF condition. 28 Vdc will be applied to K-11 through contacts 9/10 of K-14 and contacts 9/10 of K-12. Relay K-11 through its 8/7 contacts will latch "on" and apply 29 Vdc to K-17 through its contacts 12/13. Thus K-17 will remain energized (PLATE "F condition) until O/L RESET switch (PLATE OFF) manually operated. If after either a first or second overload, no additional overloads occur, the 30-second timer (Q-4, Q-5, K-16) will automatically "clear" the system; however, the associated LED indicator, "fired" by the fault condition, will remain on and can be extinguished only by manual operation of the PLATE OFF pushbutton switch. ### VI. REMOTE CONTROL The BF-3.5K is capable of interfacing with standard amote control systems. All interconnections for control/selemetering are made to TB-11/13. See Figure 2. ### 1 4.1 START-STOP FUNCTION normally-open contact closure from the remote control system should be connected to TE-13 (1 & 2) with terminal #1 as common, or ground. Momentary contact closure, militated by operation of the remote control system, will militate the START cycle of the BF-5K. A normally-open contact closure wired across terminals and 3 of TB-13 will initiate the STOP cycle of the F-3.5K when a momentary closure is initiated by the remote control system. ### THE PLATE ON/OFF FUNCTIONS Plate voltages to all tubes may be switched, on or off immotely, without interruption of illament/blower cirulity. Interwining of normally-open contact closures in the remote control system to TE-11 (1 & 2) for PLATE OFF and TE-11 (1 & 3) for PLATE ON control (Terminal #1 is common, or ground) will perform these functions remotely whenever a momentary closure is initiated by the remote control system. ### 5.2 POWER CUTPUT-RAISE/LOWER FUNCTIONS A normally-open contact closure from the remote control
system should be wired across TB-13(1 & 5). Terminal #1 is "common", or ground. Closure of these contacts, implemented by operation of the remote control system, will energize the IPA-screen voltage motor-driven control "raise" relay, K-12 as long as the closure is maintained. This will RAISE the BF-3.5K power output. A normally-open contact closure from the remote control system should be wired across TB-13(1 & 6) with Terminal #1, "common" or ground. Closure of these contacts, implemented by operation of the remote control system, will energize the IPA screen voltage motor-driven control "lower" relay, K-13 as long as the closure is maintained. This will LOWER the BF-5K power output. ### 6.2 METERING FUNCTIONS Positive-polarity samples voltage for remote metering of the PA operating parameters appear on TB-I3. ### 6.3-1 Remote PA Plate Voltage A voltage sample of the PA plate voltage appears across TB-I3(1 & 7). Terminal #1 is negative and Terminal #7 is positive, for interconnection to remote control system telemetry inputs. ### 6.3-2 Remote PA Plate Current A voltage sample, derived from the PA plate current, appears across TE-13(1 & 8). Terminal #1 is negative and Terminal #8 is positive, for interconnection to remote control system telemetry inputs. ### 8.3-3 Forward/Raverso Reflectometer Metering If desired, either the "reverse" or "forward" cower indication of the reflectometer may be metered remotely, if "reverse" power is to be metered remotely, operate the front panel REFLECTOMETER switch in FORWARD position. Make interconnection from remote control system telemetering input to TE-13(3 & 4). Terminal #3 is positive. Terminal #4 is negative. if "forward" power is to be metered remotely, operate the front panel REFLECTOMETER switch in REVERSE position. Make interconnection for remote control system telemetry input to TE-14(1 & 2). Terminal #1 is positive. Terminal #2 is negative. NOTE: If the REFLECTOMETER reading is metered remotely, as described above, the reading of the transmitter meter will not be correct unless the partinent positive lead connection as described above is removed from TB-14. ### VII. MAINTENANCE Routine housekeeping practice in keeping the capinet enclosure and the internal PA and IPA compartment areas free of dust and dirt will contribute to many years of service from the BF-5K. CAUTION: PRIOR TO PERFORMING WORK WITHIN THE CABINET AREA, SWITCH OFF FRONT PANEL CIRCUIT BREAKERS AND DISENGAGE ALL PRIMARY SERVICE SWITCHES OR BREAKERS. USING THE GROUNDING STICK PROVIDED, DISCHARGE ALL FILTER CAPACITORS BEFORE STARTING WORK. ALTHOUGH ALL HIGH VOLTAGE POWER SUPPLIES ARE EQUIPPED WITH BLEEDER RESISTORS AND THE HIGH VOLTAGE POWER SUPPLY IS AUTOMATICALLY SHORTED TO GROUND WHEN THE REAR DOOR IS OPENED, FOLLOWING THE ABOVE PROCEDURE COULD SAVE YOUR LIFE. MAKE THIS PROCEDURE A "HABIT"! Although dust accumulation within the PA and IPA compartments will be minimal due to positive cabinet pressure during blower operation, it is recommended that at intervals of no less than 30 days, this area and all internal surfaces and components within the cabinet be wiped down with a clean, lint-free cloth. Collect any accumuation of wiped-down dirt or dust with a vacuum cleaner. The dual intake filters mounted on the rear door are of the maintainable type. Visual inspection of the filters through the grille covers will indicate the presence of dust accumulation on the filter gride. Remove the captive fasteners at the top and bottom of each grille. The filter element may then be removed for cleaning. This may be done during normal transmitter operation, as baffle plates on the inside of the door prevent the filters from contacting any of the internal components or wiring. All drive motors, blowers and tans are of the permanently lubricated type and require no service. All relay contact closures are of the wiping type and protected by covers. Contact burnishing is not required. Semi-annually, the IPA and PA tubes should be removed from their respective sockets. Using a soft brush, remove dust accumulation around the socket areas. It is recommended that the cabinet outer surfaces be kept clean of finger marks by cleaning periodically with a mild detergent. Meter faces and the front plexiglass panels should be gently wiped clean using standard plexiglass cleaner or a mild detergent. Use a clean, soft cloth. ### VIII. PARTS LIST A large number of the components are of standard values and tolerances generally available through local electronics parts suppliers. Those of unusual values or tolerances are listed below: Refer to APPENDIX A for parts information on components utilized in the B-910 Exciter portion of the BF-3.5K | | • | • | |-----------------------|-------------|--| | Symbol | Part Number | Description | | 7-12 | 660033 | Canadina | | . 0-15 | 560047 | Capacitor, variable, 55-300 pf | | C-23, C-44 | 660042 | Capacitor, variable, 6.5-50 pt (IPA grid) | | C-24, C-32, C-33, | 333342 | Capacitor, 200 pf. 7.5 KV | | C-37, C-38 | 658963 | · . | | C-30, C-31 | 650077 | Capacitor, 1000 pt, 5 KV | | _ CB 4 | 03,0077 | Capacitor, mica .001 mf, 2 KV | | | • | | | | | | | C-34 | 660043 | Capacitor, variable, 9-38 pf. 4.5 KV (IPA tune) | | C-38 | 660041 | Capacitor, variable, 50 of (IPA load) | | C=43 | 660046 | Canacitos feed through 1000 | | C-47, C-48 | 660044 | Capacitor, feed through; 1000 pf, 10 KV | | C-49, C-50 | 660045 | Capacitor, 6 MF/5 KV MYLAR | | | | Capacitor, 8 mf/3 KV MYLAR | | D-1 to D-4, | | | | '0-13 to 0-18 | 210008 | Diode Doubles m | | ■ D-5 to D-8. | 210010 | Diode, Rectifier, Type 1N4006 | | D-9 to D-12 | 210016 | Diode, Rectifier, Type 1N40111 (Control Voltage Supply) | | Bio. | 210010 | Diode, Rectifier, RS-3.5-24-12S (High Voltage Supply) | | | | , | | L=1 | 928960 | Choke, 9 Henry | | ৣ L-17, L-18 | 935035 | Choke, filter reactor; 10 Hy; 1.75 A do | | L-19 | 931010 | Choke, swinging 4-20 Hy; 550 mA. | | L-20 | 931011 | Choke, 8 Hy; 550 mA. | | | | Choke, a riy, 550 mm. | | · • | 700054 | Meter and lene ble 0.5/0.40 and a truly | | | 700058 | Meter and lens kit 0-5/0-10 scale (Multimeter) | | . | 700059 | Meter and lens kit 0-300 Vac scale (Line Voltage) | | | 700060 | Meter and lens kit 0-10 Vac scale (FII. Voltage) | | 83
} 44 | 700061 | Meter and lens kit 0-2 scale (40 div) (PA Plate Current) | | | 700062 | Meter and lens kit 0-5 scale (50 div) (PA Plate Voltage) | | | 7 00002 | Meter, elapsed time. | | | • | | | R-1 | 533005 | Resistor, bathtub; 2.5 chms, 5-W, 10% | | R-4, R-5, R-5 | 535009 | Resistor, tubular; 3 K ohms, 10 W, 10% | | R-7 | 404001 | Resistor, variable; 7.5 K chm; 25 W | | `R- 3 | 404002 | Resistor, variable; 15 chm; 150 W | | | | Adiania, 19 CHLL! 100 M | ### PARTS LIST, continued | Symbol | Part Number | Description | |---------------|-------------|--| | R-10 | 404003 | · | | R-11 | • | Resistor, variable; 80 chm, 25 W | | R-13, R-15 | 402004 | Resistor, variable, 2.5 K ohm, 2 W | | R-16, R-19 | 533010 | Resistor, bathtub; 47 ohm, 5 W, 10% | | R-17, R-20 | 404004 | Resistor, variable; 50 onms, 25 W | | D.10 0.01 | 533024 | Resistor bathur o or | | R-18, R-21 | 4020C6 - | Resistor, bathtub; 0.27 ohm. 5 W, 20% | | 8-22 | 539003 | Resistor, variable; 250 ohms, 2W | | R-23 | 539006 | Resistor, tubular, adj.: 100 ohm, 160 W | | R-24 R-24A | 540101 | nesisior, tubular: 50 K Ahm see w | | R-25 to R-34, | 346101 | Resistor, tubular; 100 K ohm 225 W | | R-42 to R-45 | | The second secon | | R-36 | 505183 | Resistor: 1 megohm, 4 W, 1% | | R-39 | 539007 | Resistor Jubular add to | | | 539004 | Resistor, tubular, adj.: 10 ohm, 100 W | | R-40, to R-41 | 540107 | Resistor, tubular; adj.: 5 ohm, 175 W | | R-47 | 539005 | Resistor, tubular, adj.; 10 chm, 50 W | | | | Resistor, tubular, adj.; 50 chm, 225 W | | T-t | 920038 | | | T-2 | | Transformer, High-voltage Plate
supply | | T-3 | 920037 | Transformer, PA FIL: 7.5 Vac. C.T.: 51 A | | T-4 | 920035 | Transformer, IPA FIL: 8.3 Vac: 5 A | | T-5 | 900013 | Transformer some (%) | | 1-5 | 918965 | Transformer, screen/bias supply | | | | Transformer, control voltage supply (AT-208) | | Z-1 | 220039 | | | Z-2, Z-3, Z-4 | 220033 | Diode, Zanar, Type INS3388 | | 4 | . 220011 | Diode, Zener, 24V | | | 897324 | 94 line about | | | 149012 | PA line, shorting par assy. | | - | 149013 | Aight angle drive assy. | | | 149015 | Sprocket, ladder chain | | | | Ladder chain | | | 897315 | Cabinet exhaust fan | | - . | 897323 | Cabinet centrilugal blower | | | 897319 | Circuit breaker, AN2-A8-A-35-3 | | | 897320 | Circuit breaker Aug 35-3 | | | 897321 | Circuit breaker, AM2-A8-A-6-8 | | K10 | 897310 | Circuit breaker, AM1-A8-A-2-3 | | NIV . | | Motor, control, with brake | | | • | Contacter, 60A | | | | | ### OVERLOAD PROTECTION ASSEMBLY | 1 | • | | |--|--|--| | Q1, Q3, Q8
Q2, Q4, Q5
Q7, Q10 | 201022
201056
201109 | Transistor, SE4001
Transistor, 2N3389
SCR C103 | | D1 - D10 | 210008 | Diode, IN4004 | | 81, 84, 87
82, 85
83, 86, 89
88
811, 813, 815, 817
810, 812, 814, 815 | 502104
502098
502056
502128
502130
512003 | Resistor, 5%, ½ W, 4.7K
Resistor, 5%, ½ W, 2.7K
Resistor, 5%, ½ W, 47 ohms
Resistor, 5%, ½ W, 47.K
Resistor, 5%, ½ W, 56K
Resistor, 5%, ½ W, 1.5K | | C2, C4, C6, C10
C1, C3, C3, C11, C12 | 640003 | Capacitor, .01 100V
Capacitor, 47 pF 35V | | Kis | 470040 | Relay 6V DC | | K17, K11, K12, K13,
4, K18, K18, K19, x
2, K21 | 475041 | Relay 24V CC | #### WARRANTY McMartin products are warranted to be free from defects in materials and workmanship for a period of one year after shipping date, when subjected to normal usage and service. All warranties are vold if (a) equipment has been altered or repaired by others without McMartin's specific prior authorization; or (b) equipment is operated under environmental conditions or circumstances other than those specifically described in McMartin literature or instruction manuals. Upon notification within the applicable warranty period, McMartin agrees without charge, to repair, replace, or supply replacement parts for any properly maintained equipment or parts that are defective as to design, materials or workmanship and that are returned in accordance with McMartin's instructions to the Buyer. At McMartin's sole discretion, the Buyer may be requested to return the defective part or equipment to McMartin, FOB Omaha, Nebraska. Parts or equipment may be returned only with McMartin's prior authorization and must be identified by a return authorization number previously issued by McMartin's Customer Service Department. All merchandise so returned must be sent transportation prepaid, at Buyer's risk. Full details of the failure or malfunction should be included so as to expedite repair or replacement. Repair parts or repaired or replaced equipment will be returned to the Buyer, FOB factory. The above warranty does not extend to other equipment, such as tubes, transistors, I.C.'s lamps or fuses manufactured by others, which are subject to only such adjustment as McMartin may obtain from the suppliers thereof. McMartin shall not be liable for consequent damages resulting from the use of, or the inability to use, the equipment; nor for any loss, damage or expense incurred thereby; nor from any other cause. Except as set forth herein, and except as to title, there are no warranties, or any affirmations of fact or promises by McMartin, with reference to the equipment, or to merchantability, fitness, for particular application, signal coverage, infringement, or otherwise, which extend beyond the description of the equipment on the face hereof. ### IX. SCHEMATIC DIAGRAMS | AVEDI ALD M | | page | |-----------------------|--------------------------|------| | OVERLOAD PROTECTION | P/N550209/1 | * | | VSWR DETECTOR | P/N 550204/1 | 15 | | MASTER SCHEMATIC | P/N000270 | * | | FILAMENT TRANSFORMER | P /N920037 | 16 | | RECTIFIER TRANSFORMER | P/N918972 (single phase) | 17 | | | P/N918973 (30 phase) | 18 | VSWR DETECTOR P/N 550204/1 | (do | of Shondary | voltag) | Jelinengel) | |------|---------------------------|---------|-------------| | (0/0 | -10% —
4KV —
+10% — | | R 1 | | | -10% —
5KV — | | | | | \ +10% — | | R2 | | | 208 — | | | | | 220 ——
240 —— | | D 3 | RECTIFIER TRANSFORMER P/N 918972 RECTIFIER TRANSFORMER P/N 918973 Low voltage supply transformer used to power control ladder relays and lamps. Shown above is the normal connection arrangement for 28 volts output. To increase or decrease output voltage, subtract or add primary turns accordingly. BA-1K, BA-2.5K, BA-5K2, BA-10K, BF-1M, BF-3.5M, BF-5M, BF-10M, BF-25M Low Voltage Supply Transformer A-3106 December 31, 1979 ### MCMARTIN ## manual CHANGE/ADDENDUM | | | | | | | | , , , | |----------|------------|-------------|----------|-----------------|------------|-------------|-------------| | DATE: 17 | June 1980 | | | EFFECTIVE DATE: | 17 June 80 | page 1 of 1 | Mark Street | | PRODUCT: | BF-5K | | | | | | <i>;</i> | | - | | | | | | | | | SUBJECT: | Additional | transformer | in power | supply | | | | (Refer to Schematic Diagram 000270, Revision 'B') The BF-5K uses several power transformers requiring 115 V line voltage. In the original design the transmitter relied on a ground connection to obtain this voltage. To remove the need for this circuit arrangement, a separate 230 to 115 volt step-down transformer has been added, making the transmitter independent of any neutral or ground connection from the power line. As a result, the three-phase input line can now be connected to input terminals 8,9, and 10 of terminal board TB-10 in any sequence. A new schematic, which reflects this change, is included (#000270 Revision 'B'). The primary tap of T6 (the 230 to 115 V step-down transformer), should correspond to the line voltage in use. | L APPROVAL YELL | | | |-----------------|--------------------------------|--| | | | DATE | | | A.H. Bott A.H.). 17 Jun 80 | | | Selectary Date | Engineering 1/JUN 10 17 Jun 80 | | ### MCMARTIN ### manual CHANGE/ADDENDUM DATE: July 21, 1981 EFFECTIVE DATE: May 30, 1980 page 2 of 2 TUCT: BF-3.5M, BF-5M, BF-10M, BF-25M EUSJECT: Input Circuit Modifications -- Con't 2. V2 AND R54 NOT USED IN BF-IOM AND BF-25M. | | THAL APPROVAL | | | DATE | |----|---------------|-------------|----------|-------------| | | | 001.1 | 7-21-911 | | | Ů. | Sens Sens | Engined ing | Oate | CHANGE NO.: | # WORQ Green Bay. Tube replacement Revord P. A. replaced 2/19/95 C 66,534 Plapsed meter his. life of tube was 1 yr. (approx. 8700 hrs.) New Econor rebuilt installed Ser. # 3WT 047 2P. Driver Tubes replaced with new same date. S.A.K. 12/22/95: H.V. Rectifiers upgraded from 12KV/5A. To 20KV/6A. Due to numbrous rect. failures during mormal operation over the Past 2 yrs. IN A 10/3/96 New Priver tubes installed, Sle#MEUB0127 + MEUBOIII. 11/24/96 trouble W/ABOVE Tuble - Removed. SK 12/6/96 New Drivers, Sle MGLB0014 +MGFB0082 5x 7/9/91: New Drivery, NODBOIOS (VI) and NODBOIDO (V2) 9/12/97: P.A. tube - Brand New Cinec, Sle. NGP0071. Old Tube laited 22, 368 hrs. Lapse moter Shot. SK NoTE: The new tabe regularl significant re-tenty-approx 6-7 turns CW on Plate tuning. 2/25/99: New Drivers - Station ordered National brandsk 9/14/99: new Drivers - national Brand 12/17/00: New Drivers - Cimac sk : a [10/01: new PA 2/23/00: new obliver tables Normal WORQ X mtr meter Indications Observed as of original Start-up Jan, 1994: LINE V. = 215 (single Phase, LI/12 sel. switch not used) P. P. fil V. = 7.3 Ep = 4.6 KV Ip= 1.30A. IPA griel E = 55 V. IPA2 CATH. I = 140MA IPAICATH. I = 147MA IPA grid I = 3 MA [PA Acreen E = 226 V. IPA screen I = negative IPA Ep = 2.2 KV PAIK = 1.4 A. Reflectometer incident = 105 d. Reflectometer reflected = 1.02 VSWR, S.A. KONOPKA McMartian BF5-K Transmitter Modification Note --- 7/9/97 It was discovered, after some four years of operation at this site, that this transmitter was actually designed with no provision for remotely resetting an overload trip. Hence, the latter was added, as follows: The original O/L reset scheme, still in place, involves 28 VDC flowing thru normally-closed contacts on the front-panel PLATE OFF switch, then feeding into the Overload Protection board, via interconnect wire # 52. Once the overload board goes into a lockout condition, this 28V. must be momentarily interrupted to cause a reset. The only original way to do this was to press the front-panel PLATE OFF button. The modification involved routing wire 52 electrically in series with TB12, terminals 7 & 8. This terminal strip is at the bottom edge of the cabinet, inside the rear door. It was formerly used for audio input to a transmitter-mounted exciter. The external connections to TB12, 7&8 are to the normally-closed contacts of remote-control unit, channel 03 RAISE. S.A. Konopka, Consultant