505½ CENTINELA AVE．，INGLEWOOD，CALIFORNIA 90302 （213）
674－3021
322－2136

Operation and Maintenance Manual
－ES 510－
Operating Instructions

The ES 510 is a four digit sixty minute timer with three front mounted controls （start，stop and reset）．Each of the controls is actuated by pressing the appropriate switch．The timer will run continuously unless stopped。 If stopped the timer will hold the time displayed when it was stopped．Pressing the start switch will initiate timing from the time on the display．The reset control returns the display to 00：00．The timer may be reset while it is stopped or while it is running．If it is reset while running it will reset to 00：00 and continue to run． When power is first applied the display may come on in strange looking characters．It is recommended that after first application of power or after power loss the timer be reset to clear all counters and begin normal operation．

Specifications

Mechanical－Etched Aluminum case $23 / 4^{\prime \prime}$ High x $6^{\prime \prime}$ Wide x 5 5／8＂Deep Electrical－Input Voltage－ 117 V AC 60 Hz ；Power requirement－ 10 W maximum

Circuit Description

The ES 510 can be divided into four sections：power supply and clock，control， counting and display．Each section will be discussed below。

Power Supply and Clock
The power supply consists of T 1 ， D 1 thru $\mathrm{D} 4, \mathrm{R} 3$ and C 1 ．D1 thru D 4 form a full wave bridge rectifier for the 6 ． 3 V transformer T 1 while $R 3$ and C 1 form a filter to reduce ripple．The supply is not regulated since it is not required for proper timer operation．Typically the voltage（Vcc）at the positive terminal of Cl will be 5． 25 V DC with .5 VPP of ripple when the display is at 00：00．The clock consists of R1，R2 and C2．They form a filtered 60 Hz clock（approximately a sinusoid）which is typically $4 \mathrm{VPP}(0$ to $+4 \mathrm{~V})$ ．D5 is used to reduce the Vcc supply to the displays to approximately 4.5 V ．

Control

The start and stop controls work using a latch to either reset or allow counter Z11 to count．Z10 forms the latch with R5，C4 and R7，C5 acting as filtered pull－ups to Vcc for the start（S1）and stop（S2）switches．If S 1 is pressed momentarily ther pins 6 and 7 of $Z 1 l$ should go to approximately OV（． 8 V max）。 If S2 is pushed momentarily then pins 6 and 7 of Zll should go to approximately $+4 \mathrm{~V}(2.4 \mathrm{~V}$ minimum）．

The reset control works by momentarily resetting counters $\mathrm{Z} 5, \mathrm{Z} 6, \mathrm{Z} 7$, Z8 and Zl2. When the reset switch (S3) is pressed and held the voltage at pins 2 and 3 of counters $Z 5, Z 7$ and $Z 12$ should be at approximately $+4 \mathrm{~V}(2.4 \mathrm{~V}$ minimum). The voltage at pins 4 and 10 of Z 9 should be at approximately OV (.8V max) and the voltage at pins 6 and 7 of counters $Z 6$ and $Z 8$ should be at approxiniately +4 V (2.4V minimum). When S 3 is released the voltage at pins 2 and 3 of $Z 5, Z 7$ and $Z 12$ and the voltage at pins 6 and 7 of $Z 6$ and $Z 8$ should go to approximately $O V(.8 V$ max) and the voltage at pins 4 and 10 of 29 should go to approximately $+4 \mathrm{~V}(2.4 \mathrm{~V}$ minimum) R6 and C3 act as a filtered pull-up to Vcc for the reset switch.

Counting

Counting is achieved by dividing the 60 Hz clock properly using counters Z5, Z6, Z7, Z8, Zll and Zl2. Zll receives the 60 Hz clock at pin 14 , divides it by 6 producing a 10 Hz clock, typically $4 \mathrm{VPP}(0$ to $+4 \mathrm{~V})$ at pin $8 . \quad \mathrm{Zl2}$ receives the 10 Hz clock at pin 14 and divides it by 10 producing a 1 Hz clock at pin 8. Z5 receives the 1 Hz clock at pin 14 and divides it by 10 producing a clock or more easily described $a+4 V$ to $O V$ transition once every ten seconds at pin ll. $Z 6$ receives this transition at pin 14 and divides by 6 so that $Z 6$ produces $a+4 V$ to $O V$ transition once every 60 seconds at pin 9. Z6 is caused to divide by 6 by feeding an output (pin 8) back through two gates of $Z 9$ which cause $Z 6$ to reset to zero after it has counted five transitions from Z5. Z7 receives the transition from $Z 6$ once every 60 seconds at pin 14 and divides by 10 so that $Z 7$ produces $\mathrm{a}+4 \mathrm{~V}$ to OV transition once every 10 minutes at pin $11 . \quad Z 8$ receives this transition at pin 14 and divides by 6. Z8 is caused to divide by. 6 by feeding an output (pin 8) back through two gates of Z 9 which cause Z 8 to reset to zero after it has counted 5 transitions from 27 .

Display

The visual display is achieved by decoder drivers Z1 - Z4 and displays N1 - N4. Zl thru Z4 are BCD to seven segment decoders which take the BCD information from the counters $Z 5$ thru Z 8 and transform it into seven segment format. A decoder applies OV (. 8 V max) to the appropriate filaments of the display giving a numeric display. The display has seven filaments, one end of each tied in common (pin 2 of each display) with the other end of each connected to the decoder. The common is connected through D5 to Vcc so that when a decoder output goes to OV the filament will have voltage across it causing it to light. Following is a table showing the proper display for all possible BCD inputs to a decoder.

When BCD output is supplied we add an RC filter to each output as shown below. This is done to slow down output information in order to minimize transient problems when driving long lines. This has the limitation however, that only two standard T'TL loads may be driven from any $B C D$ output. If required, more loads could be driven by using a smaller resistance.

330 Ohm
BCD from Counter

To BCD Connector

Printed Circuit Board Layout
(Letters A,B,D and E correspond to connections to remote connector)

Truth Table

REAR
Pin
A
B
D
E
(RCl supplied for Remote only, BCl supplied for BCD or BCD and Remote).

When l0ths of seconds is supplied,
Pin 20 is A, Pin 21 is B, Pin 22 is C, and Pin 24 is D.

NOTES: unless otherwise specified.

1. Resistors are 2.7 Kohm .
2. Capacitors are. 01 uf .
3. Diodes are lN4001.
4. Zl - Z4 are 7447's.
5. Z5, Z7, Z11, Z12 are 7490's.
6. Z6, Z8 are 7492's.
7. Z 9 is a 7402 .
8. Zll is a 7400 .
9. Nl - N4 are DR2000.

PARTS LIST

ES 510

Qty	Designation	Description	P/N
4	Z1-Z4	IC	7447
4	Z5, Z7, Z11, Z12	IC	7490
2	Z6, Z8	IC	7492
1	Z9	IC	7402
1	Z10	IC	7400
5	D1-D5	Diodes	1 N 4001 or 1N3611
1	R1	Resistor	68 Ohm 1/2W $\pm 10 \%$
1	R2	Resistor	150 Ohm l/ $2 \mathrm{~W} \pm 10 \%$
2	R3, R4	Resistor	1.5 Ohm $1 / 2 \mathrm{~W} \pm 10 \%$
3	R5-R7	Resistor	2.7 Kohm 1/2W $\pm 10 \%$
1	Cl	Capacitor	4700 uf min 6V min
1	C2	Capacitor	47 or 50 uf 6 V min
2	C3, C5	Capacitor	. $01 \mathrm{uf} \pm 20 \% 10 \mathrm{~V} \mathrm{~min}$
1	C4	Capacitor	.. $002 \mathrm{uf} \pm 20 \% 10 \mathrm{~V}$ min
4	N1, N2, N3, N4	Display	DR 2000 or DA 1300
3	S1, S2, S3	Momentary Switch	\#44 Cream
1	T1	Transformer	P-6134
1		PCB	ES 510
1		Line Cord	2 Wire 7'
2		Wire Caps	71B
1		Case	10001
1		Case Hardware	

OPTIONAL PARTS

1	
1	RCl
1	
1	BCl
1	
1	

Male Remote Connector 126-010
Female Remote Connector 126-01i
Remote Cable Clamp 126-1063
Male BCD Connector 17-20250
Female BCD Connector 17-10250
BCD Cable Clamp 17-312-01

If component removal is required it is recommended that it be done by removal of all solder using a 35 W or smaller soldering iron and "solder wick" to prevent damage to the printed circuit board.

All information contained in this manual is subject to change without notice.

NOTE: If you ordered this unit in kit form, be sure to solder both leads of Cl on the top and bottom sides of the printed circuit board. Also, solder those pins of all IC's which have conductors or pads on the top side, as well as all connections on the bottom side.

Disassembly Instructions

1. Remore walnut grained cover held by two screws in rear.
2. Remove metal strap held by one screw in each side panel.
3. Remove the two side panels, each held by two screws, one on rear and one on the bottom.
4. Remove switches from front.
5. Remove transformer Tl.
6. Remove board from chassis by compressing split end of standoffs (on bottom of chassis) and pressing upward to release from chassis.
