MATRIX

AMERICAN DATA DIVISION AIRPAK electronics, inc.
HUNTSVILLE, ALABAMA

INSTRUCTION MANUAL

SERIES 900/900E
VIDEO/AUDIO SIGNAL ROUTING SWITCHER

TABLE OF CONTENTS

Page
SECTION l - INTRODUCTION
Description 1
SECTION 2 - INSTALLATION
General 2
Inspection 2
Unpacking, Damage and Shipping 2
Power Requirements 3
Installation 3
SECTION 3 - SPECIFICATIONS
Electrical 5
Video 5
Audio 6
Environmental 7
Control 7
900E Specifications 8
SECTION 4 - REFERENCE DATA
Video Levels 9
DB Voltage Ratio as Related to IEEE Units and Percentage 9
Propagation Delay Through Coaxial Cable 10
Data Sheets 13-25
SECTION 5 - CIRCUIT DESCRIPTIONS
1×10 Audio/Video Crosspoint Card 26
Audio/Video Output Amplifier 27
Matrix Control Logic 28
Control Interface 30
Power Supply 31
SECTION 6 - MAINTENANCE
General Data 32
Test Data 35
SECTION 7 - COMPONENT LAYOUTS, PARTS LISTS AND WIRING LISTS
List of Component Layouts 39
List of Wiring Lists 39
List of Parts Lists 39
Wiring Lists 40-46
Parts Lists 47-51

SECTION 1 - INTRODUCTION

Description

The series 900/900E matrix frame is a video-audio-tally routing switcher with up to twenty inputs and up to ten outputs per frame assembly. Frame assemblies are combined horizontally by means of combiner amplifiers to create routing systems larger than 20×10. High input impedance and a low reflection factor allow more than one box to be looped through vertically to form 20×20 's, 20×30 's, etc. Up to ten frames can be tied together vertically to provide a 1×100 configuration. A typical 100×10 configuration is shown in the block diagram, "Typical 100×10 Functional".

Video input and output connections are made through BNC connectors located on the back plane of the routing switcher. Audio input and output connections are made through AMP multipin connectors with press lock retaining mechanisms. Control inputs, tally outputs and power inputs are also made through AMP connectors on the back plane with press lock retaining mechanisms.

The fundamental 20×10 series $900 / 900 \mathrm{E}$ matrix is controllable by one 16-bit BCD word, or by individual bus 8-bit BCD words, or by 20 discrete control lines for each output bus. ADC offers a number of control methods for the matrix or a number of matrices. Details on controls are normally contained in the systems manual and in the individual control instruction manual.

For matrix arrangements of 20×20 and smaller, ADC normally supplies a standard ADC Model 501 power supply. For larger matrix arrangements, purchased Lambda, Hewlett-Packard, or equivalent supplies are provided. In the case of purchased supplies, the manufacturer's standard manual will be supplied.

The basic series 900/900E matrix frame is 10.5 inches high and mounts in a standard 19 inch relay rack. Each matrix frame contains up to twenty 1×10 audio/video crosspoint cards and up to ten audio/video output amplifiers. These cards can be easily removed for maintenance or replacement and can generally be moved to other locations in the matrix with very little effect on system performance.

General

The series 900/900E audio/video routing switcher is carefully inspected, tested and calibrated before shipment to insure years of stable, trouble-free service. Each frame requires 10.5 inches of vertical space in a standard 19 inch relay rack. No special cooling requirements are necessary since it was designed to operate in a temperature range from 0° to $50^{\circ} \mathrm{C}$. However, care should be taken to prevent an excessive ambient heat rise in closed, unventilated equipment racks. This is especially true if this equipment is installed in the same rack with vacuum tube equipment.

Inspection

Immediately upon receipt, inspect the packing boxes or crates for external signs of abusive handling. If such a condition is noted, notify the carrier immediately. If no external damage is visible, remove the packing material from around the matrix frame(s), control panel(s) and power supplies. Inspect to see that all PC boards are installed properly in their respective connectors and are securely fastened. Make a check of all equipment for any visible damage which may have occurred during transit.

Unpacking, Damage and Shipping

While unpacking and checking the various modules against the packing list, you may find it to your advantage to mount them in the equipment rack as you progress. The cable layout supplied must be utilized so that cable lengths will be long enough.

CAUTION

Do not interchange or substitute coax cables as marked. System timing will be affected.

Any variation from the specified inventory should be reported to ADC immediately. Write to: American Data Corporation, 401 Wynn Drive NE, P. O. Box 5228, Huntsville, Alabama 35805. If shipment damage is incurred, obtain a report from your express
agent or trucker and mail it to the address indicated earlier. Do not return damaged parted until instructed to do so by ADC.

If electronic units must be returned for service, tag them with your name, complete address, and exact description of difficulties encountered. Use original shipping cartons, if possible. If they are not available, wrap the unit in heavy paper before placing it in a carton which should be large enough to permit the use of at least three inches of shredded paper or excelsior between all sides of the unit and the carton. Mark the carton FRAGILE and clearly address it as shown earlier. Include your own name and address on the carton and ship by prepaid express. The unit will be returned express collect. Bear in mind that the carrier will disclaim responsibility for damage if, in his opinion, it was caused by improper packing.

Power Requirements

AC voltage - 105 to 125 volts ac, 60 Hz or 200 to 240 volts ac, 50 Hz (on special order). The equipment is normally wired for ac supply voltages of 105 to 125 volts (117 volts ac nominal), 50 to 60 Hz , unless otherwise specified. Current limiting is used on all the dc outputs providing brief short-circuit protection. Primary ac is fused against excessive current drains.

A three wire ac plug is provided for protection against accidental power shorts to chassis. In no case should the three wire plug be removed or tampered with.

Installation

The series 900/900E Routing Switchers are available in many configurations, making it impossible to include all installation directions in the instruction manual. A system connection diagram will be supplied for systems having more than one matrix frame. Care must be exercised in following instructions for system connections since system timing can be dramatically affected by intermixing video cables. Standard "good commerical practices" should be used in cabling, service loops, cable supports, etc. Should any difficulty be encountered with the installation or during initial system tests, please contact ADC immediately.

After you have completed visual inspection and installation of the equipment, ADC suggests that you apply a l volt $p-p$ signal to
all video inputs and an 8 dBm audio signal to all audio inputs, then switch each input (audio and video) to each output. This will functionally test all the control logic, each crosspoint (audio and video) and all output amplifiers. Do not attempt to adjust GAIN, PHASE or RESPONSE controls at this time. In the event that a discrepancy is noted, make a note of it and follow the maintenance procedure given in Section 6 of this instruction manual.

Electrical

$$
\begin{array}{cc}
\text { Power - ac } & \begin{array}{l}
105-125 \text { volts ac, } 50-60 \mathrm{~Hz} \text { or } \\
200-240 \text { volts ac, } 45-55 \mathrm{~Hz} \\
\text { (on order) }
\end{array} \\
\text { Power - dc } & +12 \text { volts dc battery (optional) to } \\
& \text { keep the crosspoints latched } \\
& \text { in the event of power failure. }
\end{array}
$$

Video
Input

Signal level	1 volt p-p video
Impedance	50 K ohm - bridging
Return loss	Greater than 45 dB to 5 MHz Number of inputs
Up to 20 per bus (basic frame) audio/video	

Output

Level

Impedance
Number of outputs per bus

Isolation between outputs

Level difference

DC on output
Frequency response

1 volt p-p

75 ohms
Two

Greater than 36 dB to 4.2 MHz

Less than 1\%
Less than 0.05 volts
$\pm 0.1 \mathrm{~dB}$ to 5 MHz
$\pm 0.5 \mathrm{~dB}$ to 8 MHz
Less than -1.0 dB at 10 MHz

Hum (peak to peak)
Bounce (10% - 90% APL) Less than 0.1 volt

Gain
Linear chroma distortion (MOD 20T pulse, l/2 line pulse)

Line tilt
Field tilt
Differential gain (10% - 90% APL)

Differential phase (10% - 90% APL)

Maximum axis shift
Amplitude stability

Switching time
Crosstalk

Path length accuracy (all inputs to any output)

Nominal - unity, adjustable $\pm 3 \mathrm{~dB}$
$\pm 0.1 \mathrm{~dB}$ relative chroma level $\pm 10 \mathrm{~ns}$ relative chroma time

Less than 0.5\%
Less than 1.0\%
Less than 0.5\%

Less than 0.5°

Less than 0.1 volt
Less than 0.1% for $\pm 10 \%$ line voltage change
Less than 0.25% for 24 hours
Less than 0.1 sec
Greater than 60 dB at 3.58 MHz
Greater than 56 dB at 4.43 MHz
$\pm 1.0^{\circ}(3.58 \mathrm{MHz}$ or 4.43 MHz$)$
-10 to $+18 \mathrm{dBm},+8 \mathrm{dBm}$ nominal
600 ohms balanced or high impedance bridging

Number of inputs
Output

Signal level	+8 dBm nominal, +18 dBm maximum
Number of outputs	One
Impedance	600 ohms balanced
Frequency response (reference 1 kHz)	$\pm 0.5 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz
Harmonic distortion (+18 dBm output)	Less than 0.5% from 20 Hz to 20 kHz
Signal-to-noise ratio (20 Hz to 20 kHz)	Greater than 75 dB below +18 dBm output
Gain	20 dB nominal
Switching time	Less than 0.1 sec
Crosstalk (20 Hz to 20 kHz)	Greater than 70 dB below +18 dBm
Common mode rejection	Greater than 60 dB at 60 Hz
Maximum common mode voltage	24 volts p-p
mental	
erating temperature range	0° to $+60^{\circ} \mathrm{C}$
rage temperature range	-20° to $+70^{\circ} \mathrm{C}$
trol voltage (ON)	Momentary single pole closure to matrix ground (2.5 mA)
trol voltage (OFF)	+5 volts dc

Environmental

O perating temperature range
Storage temperature range
-20° to $+70^{\circ} \mathrm{C}$

Control

Control voltage (ON)

Control voltage (OFF)
Up to 20 per bus

900E Specifications

The series 900 E is configured identically to the professional series. System specifications are reduced on the following parameters to:

Crosstalk (3.58 or 4.43 MHz) Greater than 50 dB
Differential phase
Less than 1° (10% to 90% APL)

Differential gain
Less than 1\% (10% to $90 \% \mathrm{APL}$)

Path length accuracy
Within $\pm 2^{0}$
Signal-to-noise ratio
Greater than -52 dB
Audio frequency response $\quad \pm 1 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz$)$
Audio distortion
Less than 1% (20 Hz to 20 kHz)
Audio signal-to-noise ratio

Audio crosstalk
Greater than -65 dB below $+18 \mathrm{dBm}$

Greater than -60 dB below $+18 \mathrm{dBm}$

VIDEO LEVELS

Composite Video Level	140	IEEE Unit		
Picture Signal	90	IEEE Units	642	
	92.5	IEEE Units	0.66	
Set Up...................	10	IEEE Units	0.0714	
	7.5	IEEE Units	0.0535	
Synchronizing Pulses	40	IEEE Unit	0.285	

DB VOLTAGE RATIO AS RELATED
TO IEEE UNITS AND PERCENTAGE

PROPAGATION DELAY

THROUGH COAXIAL CABLE

Velocity of Propagation (VP) in solid polyethylene dielectric coaxial cable is 66% of velocity in free space. This is equal to 7.874 inches per nanosecond, 20.000 cm per nanosecond. Practical figures are:
$8^{\prime \prime}(20 \mathrm{~cm})$ coaxial cable $=1$ nanosecond
$6^{\prime \prime}(15.4 \mathrm{~cm})$ coaxial cable $=1^{\circ}$ at 3.58 MHz
T at $3.58 \mathrm{MHz}=279$ nanoseconds
T per degree at $3.58 \mathrm{MHz}=0.77$ nanosecond

1 nsec	=	$1.28{ }^{\circ}$	=	7.9"	(20 cm)
2 nsec	=	2.56°	$=$	15.7"	(40 cm)
3 nsec	=	$3.84{ }^{\circ}$	=	23.6"	$(60 \mathrm{~cm})$
4 nsec	=	$5.12{ }^{\circ}$	=	31.5"	(80 cm)
5 nsec	=	$6.40{ }^{\circ}$	$=$	39.4"	(1 m)
6 nsec	=	$7.68{ }^{\circ}$	$=$	47.2"	(1.2 m)
7 nsec	=	$8.96{ }^{\circ}$	=	55.1"	(1.4 m)
8 nsec	=	$10.24{ }^{\circ}$	=	63.0 "	(1.6 m)
9 nsec	=	11.52°	=	70.9"	(1.8 m)
10 nsec	$=$	12.80°	$=$	78.7"	(2.0 m)

1	$=$	0.775	nsec			6.1"	$($	$15.4 \mathrm{~cm})$
5	=	3.875	nsec			30.3"	($77.0 \mathrm{~cm})$
10	=	7.75	nsec			60.6"		$1 \mathrm{~m} 54.0 \mathrm{~cm})$
15	$=$	11.625	nsec		$7{ }^{1}$	6.91		$2 \mathrm{~m} 31.0 \mathrm{~cm})$
20	=	15.50	nsec		10^{\prime}	1.3"		$3 \mathrm{~m} 8.0 \mathrm{~cm})$
25	=	19.375	nsec		12'	7.61		3 m 85.0 cm)
30	=	23.25	nsec	-	15^{\prime}	$1.9{ }^{\prime \prime}$		4 m 62.0 cm)
60	=	46.50	nsec		30^{\prime}	3.8"		9 m 24.0 cm)
90	=	69.75	nsec	=	45^{\prime}	5.7"		3 m 86.0 cm)
180	=	139.50	nsec		90^{\prime}	11.3"		$7 \mathrm{~m} 72.0 \mathrm{~cm})$
270	=	209.25	nsec	=	136'	5.0"		1 m 58.0 cm)
360	$=$	279.00	nsec	=	181'	10.7"		5 m 44.0 cm)

ADC CROSSPOINT TYPEI

Fig. 4-1
HYBRID CROSSPOINT

ADC CROSSPOINT
 TYPE II

Fig. 4-2
MONOLITHIC CROSSPOINT

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

RECOMMENDED OPERATING CONDITIONS

MIN NOM ${ }_{\text {M }}$ MAX ${ }^{\text {N }}$ (UNIT					
Suply Voltage V CC : S 400 Circuits		45	5	55	v
N7400 Circuits		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Operating Free-Air Temperature Range, $\mathbf{T}_{\mathbf{A}}$:	S5400 Circuils	-55	25	125	C
	N7400 Circuits	0	25	70	C

ELECTRICAL CHARACTERISTICS lover recommended oparating free-air temperatura range unless atherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline - \& \multicolumn{2}{|r|}{PARAMETER} \& \multicolumn{2}{|r|}{TEST CONDITIONS ${ }^{\text {' }}$} \& \& MIN \& TYP" \& MAX \& UNIT

\hline \% \& V_{1711} \& Logical 1 input voltage required at both input terminals to ensure logical 0 level at output \& $\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$ \& \& \& 2 \& \& \& V

\hline 1 \& $V_{\text {in(0) }}$ \& Logical 0 input voltage requised at either input terminal to ensure logical 1 level at output \& $V_{C C}=$ MIN \& \& \& \& \& 0.8 \& V

\hline ; \& $V_{\text {out }}$ (1) \& Logical 1 output voltage \& $$
\begin{aligned}
& V_{C C}=\text { MIN. } \\
& \text { llond }=-400 \mu \mathrm{~A}
\end{aligned}
$$ \& $v_{\text {in }}=0.8 \mathrm{~V}$. \& \& 2.4 \& 3.3 \& \& v

\hline \multirow[t]{4}{*}{1

\vdots} \& $V_{\text {out }}$ (0) \& Logical 0 output voltage \& $$
\begin{aligned}
& V_{C C}=M I N, \\
& I_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
$$ \& $\mathrm{V}_{\mathrm{in}}=2 \mathrm{~V}$. \& \& \& 0.29 \& 04 \& v

\hline \& 'iniol \& Logical Olavel input current leach inpui) \& $V_{C C}=$ MAX . \& $\left.V_{\text {in }}\right\lrcorner 0.4 \mathrm{~V}$ \& \& \& \& -1.6 \& mA

\hline \& $1 \mathrm{~m} \| \mathrm{l}$ \& Logical 1 level input current (each ingut) \& \[
$$
\begin{aligned}
& V_{C C}=M A X . \\
& V_{C C}=M A X .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& V_{1 n}=24 V \\
& V_{\text {tn }}=5.5 V
\end{aligned}
$$

\] \& \& \& \& \[

40

\] \& \[

$$
\begin{aligned}
& M A \\
& m A
\end{aligned}
$$
\]

\hline \& ${ }^{\text {I OS }}$ \& Short circuit output current ${ }^{\text {t. }}$ \& $V_{C C}=\operatorname{MAX}$ \& \& \[
$$
\begin{aligned}
& \text { S5.103 } \\
& \text { N7400 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20 \\
& 1 i 5
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& -55 \\
& -55
\end{aligned}
$$
\] \& 110

\hline
\end{tabular}

DIGITAL 54/74 TTL SERIES
SCHEMATIC (each gate)

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage VCC: $\begin{aligned} & \text { S5402 Circuits } \\ & \text { N7402 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output. N				10	
Operating Free-Als Temperature Range. $\mathrm{T}_{\mathbf{A}}$:	S5402 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7402 Circuits	0	25	70	${ }^{*} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unlexs otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$v_{\text {in }}(1)$	Logical 1 input voltage required at either input terminal to ensure logical 0 level at output	$V_{C C}=$ MIN			12			v
$V_{\text {in }}(0)$	Logical 0 input voltage required at both input terminals to ensure logical 1 level at output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$					0.8	v
$V_{\text {out(1) }}$	Logical 1 output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MIN, } \\ & \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$	$v_{10}=0.8 v$		2.4	3.3		V
$\mathrm{V}_{\text {OLit }}(0)$	Logical 0 output voltage	$\begin{aligned} & V_{C C}=M I N_{1} \\ & I_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$	$V_{\text {in }}=2 \mathrm{~V}$.			0.22	0.4	V
$1 \mathrm{In}(0)$	Logical 0 level input current (each input)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 V$				-1.6	mA
$1 \mathrm{in}(1)$	Logical 1 level input current leach input)	$\begin{aligned} & V_{C C}=\text { MAX. } \\ & V_{C C}=M A X . \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				40 1	$\begin{aligned} & \mu A \\ & m A \end{aligned}$
${ }^{\text {I OS }}$	Short circuit output Current \dagger	$V_{C C}=$ MAX		$\begin{aligned} & \text { S5402 } \\ & \text { N7402 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -55 \\ & -55 \end{aligned}$	mA

DIGITAL 54/74 TLL SERIES

SCHEMATIC (each invertar)

PIN CONFIGURATIONS
W PACKAGE

A.F PACKAGE

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage VCC: $\begin{aligned} & \text { S5404 Circuits } \\ & \text { N7404 Circuils }\end{aligned}$	4.5	5	5.5	v
	4.75	5	5.25	v
Norinalized Fin. Out from Outpui, N			10	
Operiting Free.Air Temperature Range. $\mathbf{T A}_{\text {A }}$: S5404 Circuils	-55	25	125	C
N7404 Circuits	0	25	70	C

ELECTRICAL CHARACTERISTICS lover recommended operating free-air temperature ange unless otherwise noted)

BCD-TO-DECIMAL DECODER/DRIVER WITH OPEN COLLECTOR HIGH VOLTAGE OUTPUTS

description
The 54/7445 and 54/74145 BCD-to-Decimal Dacoder/Driver is a TTL MSI array. It features standard TTL inputs and high voltage, high current $(80 \mathrm{~m} A)$ outputs. The $54 / 7445$ minimum output breakdown is 30 volts and the 54/74145 minimum output breakdown is 15 volts.

LOGIC DIAGRAM

NOTE: 1. These valtage values are with rappect to natwork ground terminal.

PIN CONFIGURATIONS

TRUTH TABLE

INPUTS				
\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

OUTPUTS									
0	1	2	3	4	5	6	7	8	9
0	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1
1	1	1	1	0	1	1	1	1	1
1	1	1	1	1	0	1	1	1	1
1	1	1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $\mathbf{V}_{\text {cc }}{ }^{\text {(See }}$ Note 1):		MIN	NOM	MAX	UNIT
	S5445, S54145 Circuits	4.5	5	5.5	v
	N7445, N74145 Circuits	4.75	5	5.25	v
Valtage on any Output	S5445. N7445 Circuits			30	v
	S54146, N74145 Circuits			15	v

'42A, 'L42 . . . BCD-TO-DECIMAL
 '43A, 'L43 . . EXCESS-3-TO-DECIMAL
 '44A, 'L44 . . EXCESS-3-GRAY-TO-DECIMAL

- Also for Application as 4.Line-to-16-Line Decaders 3-Line-to-8-Line Decaders
- Diode-Clamped Inputs

TYPES POWER DICSIPATION PAOPAGATIQN DELAYS

description
These monolithic decimal decoders consist of eight inverters and ten four input NANO gates. The invert ers are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain off for all invalid input conditions.

The '42A and 'L42 BCD-to decimal decoders, the

SN54'/SN74' . . J, N, OR WPACKAGE SN54L'/SN74L'...JORNPACKAGE (TOP VIEW)
 '43A and 'L43 excess 3 -to-decimal decoders, and the

$$
\text { 44A and 'L44 excess-3.gray } \mathbf{t o} \text { decımal decoders feature familiar transistor transistor-logic (TTL) circuils with inguts }
$$ and outputs which are compatible for use with other TTL and DTL circuits. D c noise margins are typically one volt.

The 'L42, 'L43, 'L44 decoders are designed specifically for power-critical or battery-operated systems. The '42A. '43A. and '44A decoders are intended for higher performance systems, especially new designs, where power is not critical. For ultrahigh performance and or speed-critical memory decoders, the SN54S138/SN74S138 and SN54S139 SN74S139 are recommended

NO.	$\begin{aligned} & \text { '42A. 'L42 } \\ & \text { BCD INPUT } \end{aligned}$				$\begin{gathered} \text { '43A. 'L43 } \\ \text { EXCESS-3.INPUT } \end{gathered}$				'44A. 'L44 EXCESS 3-GRAY INPUT				ALL TYPES DECIMAL OUTPUT									
	0	C	B	A	0	C	B	A	0	C	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	L	H	H	L	1	H	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	L	H	L	L.	L	H	H	L	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	L	H	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H
3	L	L.	H	H	L	H	H	L	L	H	L	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	1	H	H	H	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	L	L	L	H	H	L	L	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	L	L	H	H	H	L	H	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	L	H	L	H	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	L
	H	L	H	L	H	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
응	H	L	H	H	H	H	H	L	H	L	L	H	H	H	H	H	H	H	H	H	H	H
	H	H	L	L.	H	H	H	H	H	L	L	L	H	H	H	H	H	H	H	H	H	H
2	H	H	L	H	L	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H
	H	H	H	L	L	L	L	H	L	L	L	H	H	H	H	H	H	H	H	H	H	H
	H	H	H	H	L	L	H	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H

[^0]DESCRIPTION
The S5475B/N7475B is a monolithic, quadruple, bistable latch with complementary \mathbf{O} and $\widehat{\mathbf{Q}}$ ourputs. Information present at a data (D) input is transferred to the Q output when the clock is high, and the Q output will tollow the data input as long as the clock remans high. When the clock goes low, the information that was present at the data input at the time the transition occurred) is retained at the Q output until the clock is permitted to go high.
This latch is ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units.

TRUTH TABLE

LOG1C			NOTES: 1. $i_{n}=$ bit time before clock pulse
(Each Latch)			
i_{n}	$t^{t}+1$		
0	0	$\overline{\mathbf{0}}$	
1	1	0	2. \mathbf{t}_{n+1}, bit time after clock puise
0	0	1	3. These voltages are with respect 10 network ground terminal.

PIN CONFIGURATIONS

SCHEMATIC (each latch)

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Suphl Voliage $V_{\text {cc }}($ See Note 3): 55475 Circuits		4.5	5	5.5	\checkmark
N7475 Circuits		4.75	5	5.25	V
Normalized Fan-Out from Ourputs				10	
Operating Free-Air Temperature Range, $\mathbf{T}_{\mathbf{A}}$	S5475 Circuits	-55	25	125	${ }^{2} \mathrm{C}$
	N7475 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating freo-air temperature range unless otharwise noted)

PARAMETER		TEST CONDITIONS'		MIN	TYP**	MAX	UNIT
$V_{\text {a }}$ (1)	Input voltage required to ensure logica! 1 level at any input terminal	$V_{C C}=\mathrm{MIN}$		2			V
$V_{10}(0)$	Input voltage required $t o$ ensure logicat 0 level at any input terminal	$V_{C C}=$ MIN				0.8	v
$V_{\text {out(1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN	'load - -400 HA	24			v
$\mathrm{V}_{\text {outiol }}$	Logical 0 output voltage	$V_{C C}=$ MIN .	$I_{\text {sink }}=16 \mathrm{~mA}$			0.4	V

DESCRIPTION

This monolithic TTL monostable multivibrator features atc ifiggering from positive or gated negative-going inputs with inhibit facility. Both positive and negativegoing output pulsas art provided with full fan-out to 10 normalized loads.

Pulse triggering occurs at a particular voltage lavel and is not diractly matated to the transition time of the input pulse. Schmitt-trigger input circuitry for the B input allows jittar-free triggaring from inputs with trensition times as slow as 1 voly/sacond, providing the circuit with an exceslent noise immunity of typically 1.2 volts. A high immunity to $V_{\text {CC }}$ noise of typically 1.5 volts is also provided by internal latching circuitry.

Once fired, the outputs are independent of further transitions on the inputs and are a function only of the timing components. Input pulses may be of any duration relative to the output pulse. Output pulse lengths may be veried from 40 nanoseconds to 40 seconds by choosing appropriate timing components. With no external timing componants (i,e.. pin (9) connected to pin (14). pins (10).
(11) ocent an output pulsa of typically 30 nanosecands is achieved which may be used as a dc triggarad reset signal. Output rise and fall times are TTL compatible and independent of pulse length

Pulse width is achieved through internal compensation and is vir. tually independent of $V_{C C}$ and temperature. In most applications, pulse stability will only be limited by the accuracy of external timing components.

Jitter-free operation is maintained over the full temperature and $V_{\text {cC }}$ range for more than six decades of timing capacitance 110 pF to $10 \mu \mathrm{~F})$ and more than one decade of timing resistance $(2 \mathrm{k} \Omega 2$ to $40 \mathrm{k} \Omega$). Throughoul thase ranges. pulse width is defined by the relationship $t_{p l o u t)}=C_{T} R_{T} \log _{e} 2$.

Circuit performance is achieved with a nominal power disipation of 90 milliwatts at 5 voles (50% duty cycla) and a quiescent dissipation of typically 65 milliwates.

Duty cycles as high as 90% are achieved when using RT. $40 k \Omega$. Highar duty eycles are achrevabla if a certain amount of pulse-widih jitter is allowed.

PIN CONFIGURATIONS

TRUTH TABLE

DESCRIPTION

The 54/74154 decodes 4 binary-coded inputs to one of 16 mutually exclusive outputs when each of the two strobe inputs are low. The demultiplexing function is achieved by using the 4 input lines lor output addressing and data from one strobe input while the other strobe input is held law.

PIN CONFIGURATIONS

LOGIC DIAGRAM

TRUTH TABLE

INPUTS						OUTPUTS															
G1	G2	D	C	日	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	'H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	4	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L
L	H	\times	x	x	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	X	X	x	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	\times	X	\times	\times	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

$H=$ High, L Low, $X=$ Irralevant

- Three-State Outputs Interface Directly with System Bus
- Gated Output-Control Lines for Enabling or Disabling the Outputs
- Fully Independent Clock Virtually Eliminates Restrictions for Operating in One of Two Modes:

Parallel Load Do Nothing (Hold)

- Average Propagation Delay . . . 23 ns Typical
- Maximum Clock Frequency . . . 35 MHz Typical
- Power Dissipation . . . 250 mW Typical
- For Application as Bus Buffer Registers

description

The SN54173 and SN74173 four-bit registers include D type flin flops featuring totem-pole threestate outputs capable of driving highly capacitive or relatively low-impedance loads. The high-impedance third state and increased high-logic-level drive provide these flip-flops with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. For applications not requiring three-state outputs, the SN54174 or SN74174 hex D-type flip-flop can be used for a 33% reduction in package count and a 40\% reduction in power, or the SN54175 or SN74175 quadruple D-type flip-flop can be used for a similar reduction in power.

Gated enable inputs are provided on the SN54173 and SN74173 for contralling the entry of data into the flip.flops. When both dataenable inputs are low, data at the \mathbf{D} inputs are loaded into their respective Hlip.flops on the next positive transttion of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states (high or low levels) of the four outputs are

positive logic: see function table

INPUTS					OUTPUT 0
CLEAR	CLOGK	DATA ENAELE		$\begin{gathered} \hline \text { DATA } \\ 0 \\ \hline \end{gathered}$	
		G1	G2		
H	x	x	X	x	$\stackrel{1}{ }$
L	L	\times	x	x	a_{0}
L	\dagger	H	x	x	0_{0}
L	1	\times	H	x	a_{0}
L	\dagger	L	L	L	L
L	\dagger	L	L	H	H

When either M or N (or both) is (arel high the output is disabled so the high-impedance state; however sequential operstion of the llip-liops is not affected.

H = high laveitsteady itatel
L = low leval (steady state)
t-tow-to-high-laval transition
$\mathrm{X}=$ irtelevant (any inpur including tranaltiona)
$O_{0}=$ the leval at \mathbf{Q} tefore the indicated eready-siate input canditions ware establianed. available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the function table.

Rated at -5.2 mA high-logic-level drive current, up to 128 of the SN74173 outputs may be connected to a common bus and still drive wo Series 54/74 TTL normalized loads. Similarly. up to 49 of the SN54173 outputs can be connected to a common bus and drive one additional Series $54 / 74$ TTL load. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable times are shorter than the average output enable times by 10 nanoseconds. The SN54173 and SN74173 are guaranteed to accept clock input frequencies up to $\mathbf{2 5} \mathbf{M H z}$.

TYPES SN54190, SN54191, SN54LS190, SN54LS191, SN74190, SN74191, SN74LS190, SN74LS191 SYNCHRONOUS UP/DOWN COUNTEAS WITH DOWN/UP MODE CONTROL

- Counts 8-4-2-1 BCD or Binary
- Single Down/Up Count Control Line
- Count Enable Control Input
- Ripple Clock Output for Cascading
- Asynchronously Presettable with Load Control
- Parallel Outputs
- Cascadable for n-Bit Applications

TYPE	average PROPAGATION DELAY	TYPICAL MAXIMUM Clock freduency	TYPICAL POWER DISSIPATION
'190. '191	20 ns	25 MHz	325 mW
'LS190. 'LS191	20 ns	25 MHz	go mW

description

JOR N DUAL-IN-LINE OR WFLAT PACKAGE (TOP VIEW)

asynchranous inputs: Low input to load se1s $Q_{A} 口 A_{1}$ $\mathrm{O}_{\mathrm{B}}=\mathrm{B}, \mathrm{O}_{\mathrm{C}}=\mathrm{C}$, and $\mathrm{O}_{\mathrm{D}}=\mathrm{D}$

The '190, 'LS190, '191, and 'LS191 are synchronous, reversible up/down counsers having a complexity of 58 equivalent gates. The ' 191 and 'LS191 are 4 -bit binary counters and the ' 190 and 'LS190 are BCD counters. Synchronous operation is provided by having all flip.flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the outgut counting spikes normally associated with asynchıonous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a law to high-level transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.

These counters are fully programmable; that is, the outputs may be preset to either tevel by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs indegendently of the level of the clock input. This feature allows the counters to be used as modulo.N dividers by simply moditying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers, etc., required for lang parallel words.

Two outpuis have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Series 54^{\prime} and $54 L S^{\prime}$ are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C} 10125^{\circ} \mathrm{C}$; Series 74^{\prime} and 74LS' are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

- SN54221, SN54LS221, SN74221 and SN74LS221 Are Dual Versions of Highly Stable SN54 121, SN74121 One-Shots on a Monolithic Chip
- Pulse-Width Variance Is Typicaliy Less than $\pm 0.5 \%$ for 98% of the Units
- SN54221 and SN74221 Demonstrate Electrical and Switching Characteristics That Are Virtually Identical to the SN54121, SN74121 One-Shots
- Pin-Out Is Identical to the SN54 123

SN74123, SN54LS123, SN74LS123

- Overriding Clear Terminates Output Pulse

	TYPICAL	
TYPE	POWER	MAXIMUM
OUTPUTPULSE		
DISSIPATION	LENGTH	

SN54221, SNSALS221. . . J OR W PACKAGE SN74221, SN74LS221...J OR NPACKAGE (TOP VIEW)

positive logic: Low input to clear resets \mathbf{O} low and 0 high regarders of oc levels at A or 8 inguts.
description
The '221 and 'LS221 are monolithic dual multivibrators with perlormance characteristics virtually identical to those of the 121. Each multivibrator teatures a negative-1ransition-triggered input and a positive-transition triggered input either of which can be used ds an inhibit input.
Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the inpur pulse. Schmitt-trigger input circuitry (TTL hysteresis) for \mathbf{B} input allows itter free triggering from inputs with transition rates di slow as 1 volt/second. providing the circuit with excellent noise immunity of typically 1.2 volts. A high immunity to VCC noise of typically 1.5 volts is alse provided by internal latching circuitiy.

Once fired, the outputs are independent of further transitions of the A and B inputs and are a function of the timing components, or the output pulses can be terminated by the oversiding clear. Input pulses may be of any duration retative to the output pulse. Output pulse length may be varied from 35 nanoseconds to the maximums showin in the above table by choosing appropriate timing components. With $\mathrm{R}_{\mathrm{ext}}-2 \mathrm{k}!!$ and $\mathrm{C}_{\mathrm{exi}}=0$. an output pulse of typically 30 namoseconds is achieved which may be used as a detriggered reset signal. Output rise and fall times are TTL cumpatible and independent of pulse length Typical triggering and cleafing sequences are illustra:ed as a part of the switching charactetistics waveforms.

Pulse width stability is acheved through internal compensution and is virtually independent of VCC and femperarure In most applications, pulse stability will only be limited by the accuracy ol external timing components.
Jither-free operation is maintained over the full temperature and VCC ranges for more than six decades of timing capacitance $(10 \mathrm{pF}$ to $10 \mu \mathrm{~F})$ and more than one decade of timalig resistance $(2 \mathrm{k} \Omega$) to $30 \mathrm{k} \Omega 2$ for the $\mathrm{SN} 54221,2 \mathrm{k} \Omega 2$ to $40 \mathrm{k}!$ for the SN74221. 2 ks ! $1070 \mathrm{k} \Omega$ for the SN54LS221. and $2 k!2$ to $100 \mathrm{k} \Omega 2$ for the SN74LS221). Throughout these isnges, Dulse width is defined by the relationship: (wrout) - Cext Rext $\ln 2 \approx 0.7 \mathrm{C}_{\text {ext }} \mathrm{R}_{\text {ext }}$. In circuits where Dieite cutofl is not critical, timing capacitance up to $1000 \mu \mathrm{~F}$ and $t: m . n g$ resistance as low as 1.4 ks ? may be used. Also, the 'ange of jister-free output pulse widths is extended II $V_{C C}$ is

TYPES SN54221, SN54LS221, SN74221, SN74LS221 dUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS

description (continued)

held to 5 volts and free-air temperature is $25^{\circ} \mathrm{C}$. Duty cycles as high as 90% are achieved when using maximum recommended RT. Higher duty cycles are available if a certain amount of pulse-width jitter is allowed.

The variance in output pulse width from device to device is typically less than $\pm 0.5 \%$ for given external timing components. An example of this distribution for the ' 221 is shown in Figure 2. Variations in output pulse width versus supply voltage and temperature for the ' 221 are shown in Figure 3 and 4, respectively.

Pin assignments for these devices are idenrical to those of the SN54123/SN74123 or SN54LS123/SN74LS123 so that the ' 221 or 'LS221 can be substituted for those products in systems not using the retrigger by merely changing the value of $R_{\text {ext }}$ and/or $\mathrm{Cext}_{\text {e }}$.

TIMING COMPONENT CONNECTIONS
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

[^1]HIGH SLEW-RATE INTERNALLY-COMPENSATED OPERATIONAL AMPLIFIER

The MC1741S/MC1741SC is functionally equivalent. pin com patible, and possesses the same ease of use as the pooular MC: 741 circuit. yet offers 20 times higher slew rate and power bandtwidin This device is ideally surted for D-to-A converters due 10 its las: settling time and high slew rate.

- High Slew Rate - 10 V/us Guaranteed Minimum
- No Frequency Compensation Required
- Short-Circuir Prorection
- Offsai Valtaga Null Capability
- Wida Common.Moda and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up

, . . . n, mp

MAXIMUM RATINGS ITA $\quad \cdot 25^{\circ} \mathrm{C}$ Unless otharwise noted. 1

Aating	Symbal	Value		Unt
		MC17415C	MC1741S	
Power Supply Volisge	$\begin{aligned} & v_{C C} \\ & v_{E E} \end{aligned}$	$\begin{array}{r} \cdot 18 \\ -18 \end{array}$	$\begin{array}{r} .22 \\ -22 \\ \hline \end{array}$	Vdc
Ditierential mpui Siqnal Voltage	$V_{\text {in }}$	± 30		Volis
Comman-Made inpul Voltage Siving ISa Nola 11	VICR	± 15		Volis
Output Short.Cifeull Ountion ISes Note 21	1.	Coninuaus		
Power Dissipation (Packnge Liffitstion) Mater Packsan Derate above $T_{A}=-25^{\circ} \mathrm{C}$ Pastuc Dual in-Lina Packuge Derate above $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} 680 \\ 46 \\ 625 \\ 50 \end{gathered}$		$\begin{gathered} m w \\ m w f^{\circ} \mathrm{C} \\ \mathrm{mw} \\ \mathrm{mw} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operasing Temperalura Range	$\mathrm{T}_{\text {A }}$	0 t0-75	-55 to -125	${ }^{5} \mathrm{C}$
Stor wie I emper ature Range Meral Packapa Manlic Packapa	T_{mg}	$\begin{aligned} & -6510 \cdot 150 \\ & -55: 0-125 \end{aligned}$		${ }^{\circ} \mathrm{C}$

Note 2. Suppiy voltmen mud to or latim than is Vde.

SECTION 5 - CIRCUIT DESCRIPTIONS

1×10 Audio/Video Crosspoint Card

Please refer to drawing, 1×10 Crosspoint, Monolithic Model 9l0lM, Dwg. No. 9959300013.

Purpose - The 1×10 card buffers and switches the audio input, buffers and switches the video input, and generates both a "row" tally and a "bus" tally output.

Description - A high input impedance (approximately 10 K ohms), differential input, audio amplifier provides over 60 dB of common mode rejection, converts the balanced audio signal to single-ended, and isolates the audio input line from the primary switching system. Resistors R17, Rl8 and R19 are used to terminate the balanced line. Resistors R24 and R26 can be changed according to the table shown on the reference drawing to vary the gain of the front-end audio amplifier.

A high input impedance (approximately 50 K ohms) video amplifier isolates the switching system from the video input signal which may be looped-through to other matrix boxes or to other equipment. This video amplifier has a gain of approximately 1.6 and functions as a high impedance input, very low output impedance buffer.

Switching of both audio and video is performed by a 16 pin dual-in-line integrated circuit developed by ADC especially for this purpose. Switching is completed when the control line(s) is pulled to matrix ground potential. At this time, two separate tally transistors are activated; one turns on a LED on the card indicating closure and functions as "row" tally output, the second is collector OR'd with corresponding transistors in other crosspoints to form "bus" tally.

Potentiometer Rll provides an approximate $\pm 2^{\circ}$ phase shift adjustment. With a little care, all paths through the series 900/900E can be phased so that less than $\pm 1^{\circ}$ of phase error exists between any path through the system.

Audio/Video Output Amplifier

Please refer to drawing, Schematic, Audio/Video Output Amplifier - Model 9102M, Dwg. No. 9959300014.

Purpose - The audio/video output amplifier card provides the audio and video bus current sources (or load resistors). In addition, it provides a high impedance to the bus and a low output impedance.

Description - As each crosspoint is turned $O N$, the audio signal passes through the crosspoint and appears on the collector of Q7, the crosspoint current source. A transistor (Q15) is used as a "blind" crosspoint when there are no crosspoints ON in the bus served by that output amplifier. This prevents "popping" when switching a signal onto this bus. The audio signal on the collector of Q7 is divided by R25 (audio gain control). The integrated circuits Z2 and Z3 generate out-of-phase signal to drive the output transistors Q9 and Qll, which produces a balanced audio output.

The output stage of the ADC designed video crosspoint is an emitter follower whose emitter load is made up of R1 and R2 on the output amplifier. Ql is a clamping transistor to set the level (dc) at the input to the output amplifier when there are no other crosspoints ON on the bus. Potentiometer Rl is the video GAIN control. The video output amplifier incorporates a dc restoration circuit to maintain the back porch of the composite video signal near ground potential.

The audio amplifier has one balanced, 600 ohm output; the video output amplifier has two 75 ohm, single-ended outputs.

Matrix Control Logic

Please refer to drawing, Schematic, Rear Panel - Model 9104 , Dwg. No. 9959300005.

Purpose - The rear panel of the series 900/900E matrix frame contains all the crosspoint control logic. This logic decodes incoming commands and causes the selected crosspoint control line to go to matrix ground.

Description - The series 900/900E matrix is divided into two 10×10 sections which ideally lend themselves to control by BCD characters (1-2-4-8). In normal operation, the matrix is set up by a series of 16 -bit words made up of four 4 -bit characters. These characters are called X-units, X-tens, Y-units and Y-tens. For a 20×10 matrix, the X-tens are decoded by Z27 to steer the four bits of X-units data to either the $0-9$ side or the $10-20$ side of the matrix. The outputs of Z27 are strappable on each matrix frame so that the units data can be steered in matrices with larger inputs. The matrix frame for inputs $21-40$ would have straps on the 3 and 4 outputs of Z27.

The X data, of course, controls input while the Y data determines the output. To operate properly, both commands must be present. Y-units are decoded by Z24 to provide ten discrete outputs which gate the X -units data into the latches of the desired output bus. As you can see on the referenced drawing, there are a latch and decoder associated with each ten inputs on each output bus. Once the data is latched, it is decoded into one of ten discrete outputs by the decoder associated with that latch which, in turn, closes the associated crosspoint. Y-tens are decoded by Z25 and the output strapped to identify the matrix frame from an output point of view. Strapping the 1 output of Z 25 to pin 19 of Z 24 , as an example, identifies outputs $1-10$ and gates only the Y-units commands associated with those outputs to Z 24 .

A series of ten l6-bit words, therefore, can select the input (l of 100) desired for each of ten output buses.

In addition to the method of control described above, it is possible, for example, to remove Zll and install a dual-in-line connector and control the first half of the first bus with any 4-bit latched data. Also, Zl can be removed and a dual-in-line connector
installed with ten discrete wires which can control the first half of output bus \#1. Interlocks would have to be provided in the external control system to prevent turning on more than one crosspoint on a bus.

In normal operation, the control interface unit generates a series of 16 -bit words and a strobe which are the command inputs to the series 900/900E matrix frame. The strobe pulse (derived from Vdrive) latches the Y-data into Z24 provided, of course, that it is not inhibited by the output of the Y-tens decoder. This provides vertical interval switching for the series 900/900E routing switches.

Control Interface

Please refer to drawing, Strobe Conditioning \& Scan Control Model 9107, Dwg. No. 9959300008.

Purpose - The series 900/900E control interface multiplexes inputs from all standard ADC control modules to generate a 16 -bit $B C D$ word and strobe pulse to control the series $900 / 900 E$ matrix.

Description - All information transfer in the control interface is made under the control of one of two clock pulses. The first is a 60 Hz pulse derived from incoming V-drive, which makes all switching occur in the vertical interval. The second clock pulse source is a 60 Hz self-contained oscillator.

A one-shot multivibrator (Z2A) generates a dual clock pulse which first gates new information from the remote control units into the storage registers, then advances the Y-units counter (Z3).

The other side of Z 2 (Z 2 B) creates a strobe pulse from the leading edge of V -drive, which is delayed by an amount determined by R25. This strobe pulse is normally set to occur two to four lines after the vertical sync.

Twenty tri=state 4-bit registers (SN74173's) are arranged in ten sets of 8 -bits, which correspond to the ten output buses. Normally, each set of 8 -bits represents the input selection (00 to 99) made by each discrete control panel and its associated TAKE button; however, inputs to the control unit may be paralleled for controlling more than a single output from a single control panel. New input select information is stored when a TAKE command and a clock pulse (from Z2A) occur simultaneously.

The Y-units counter also feeds a $B C D$ to the one-of-ten decoder Z4 (SN7445) which controls the output state of the tri-state registers. Each time the Y-units counter advances, a new set of eight X-bits is selected. After a slight delay, the matrix is strobed; entering the new l6-bit control word into the series 900/900E matrix control logic. Each output bus of the matrix is updated every tenth V-drive pulse. This makes the maximum TAKE delay that can occur nine vertical interval periods (9 times 16.6 ms).

Power Supply

Please refer to drawing, 900 Matrix Power Supply - 900/501, Dwg. No. 9992740003.

Purpose - ADC provides a standard Model 501 power supply (for systems smaller than 20×20) or purchased supplies (Lambda or Hewlett Packard, normally) to supply the +12 voits, -12 volts and +6 volts required by the series $900 / 900 \mathrm{E}$ matrix systems. If your system has purchased supplies, please consult the manufacturer's instruction manual included in the system documentation.

Description - The ADC Model 501 supplies the three voltages ($+12,-12$, and +6) required by the series $900 / 900 \mathrm{E}$ matrix frame. All three power supplies in the Model 501 are fundamentally the same, therefore, only one will be explained. The rectified, filtered voltage on the plus end of C24 is the unregulated dc source. Fuse Fl protects against catastrophic failure in the event the current limit circuit (R1-Ql) fails to limit current flow. Transistor Qll and voltage regulator VR1 form a standard voltage regulator. The output voltage can be adjusted by R5. Another safety feature is the "crowbar" circuit formed by D1-R4-Q 2. In the unlikely event that the series regulator fails (shorts), and the output voltage starts to rise, the SCR (Q2) will fire, creating an effective short circuit across the output and causing F1 to blow. Q2 fires when the output voltage exceeds the drop across zener Dl (l2 volts) by approximately 2 volts.

Each of the other supplies operates in much the same manner, being comprised of a raw dc supply, fuse, current limiter, series regulator, and an output "crow-bar" circuit.

Each output is metered by a switchable meter circuit.

SECTION 6 - MAINTENANCE

General Data

There are, in general, two aspects to maintaining the series 900/900E matrix and associated controls. These are preventive maintenance and servicing or troubleshooting in the event of failure. All ADC equipment is transistorized, therefore it requires very little preventive maintenance. The inevitable accumulation of dust should be removed periodically with a soft, long bristled brush, a vacuum cleaner (be sure that the power is OFF if hose end is metal), or a stream of low pressure air. An excessive ambient temperature level is certainly the greatest danger to electronic equipment. Although ADC equipment requires no special cooling, during preventive maintenance check the rack enclosure filters (if it has them) and rack ventilation entrance/exit points to insure that they are not obstructed.

ADC provides extender boards for the two PC boards in this equipment. Each card may be made more accessible by installing it on the extender board provided. The dc voltages present on the boards are low enough so that no potential shock hazard exists; but it is still necessary to guard against accidential shorts from tools and other metal (conductor) objects.

If it becomes necessary to replace any solid state components, precautions should be taken to avoid heat damage. The use of longnosed pliers or other clip-on heat sinks is advised. Also, excessive heat may cause the actual copper PC board circuits to "peel off" the Gl0 glass epoxy boards. ADC recommends the small, pencil type soldering irons of $20-30$ watts capacity to reduce the chance of damage to solid state components or the PC board itself.

One of the most effective means of removing the solder from the leads of the device being replaced is to use the so called "solder sponge" technique. ADC recommends the use of a rosin-dipped, tinned, copper braid manufactured by Alpha Industries, or equivalent. If this is not available, copper braid can be obtained by stripping the insulation off short pieces of coaxial cable and using the braided shield dipped in a rosin solution such as Alpha Industries Alpha Realiafoam \#809 Flux. A clean, well-tinned soldering iron tip held against the rosin coated braid, which in turn is held against the solder area to be cleaned, will result in quick removal of
solder from this area with minimum possibility of heat damage.
Junction breakdown in transistors and diodes due to excessive current or heat will result in the junction's appearing to be short circuited or open circuited. This can be easily verified by an ohmmeter like the Simpson 260. To avoid the possibility of damaging a good component, set the meter on the ohms x 10 scale. With the knowledge that a forward biased diode presents a low impedance path and a reverse biased diode a high impedance path, you can quickly determine if a diode/transistor junction has failed in either of the two modes previously mentioned.

With the positive lead of the voltmeter on the a node of a silicon diode and the negative lead on the cathode (end with the band), you should read on the ohmmeter something less than 500 ohms, but not a short. Reversing the leads should result in a reading of greater than one megohm, but not an open.

Transistors can be regarded as two diodes connected back-toback. The diode equivalent to PNP and NPN transistors is shown in Fig. 6-1.

Fig. 6-1 Diode Equivalent of Transistor

The bottom view of a typical transistor used by ADC is shown in Fig. 6-2.

Fig. 6-2 Bottom View of Typical Transistor

Using the technique previously explained for determining the condition of a diode, you can use the Simpson 260 (ohmmeter) to determine the condition of the "diode" junction in a transistor. Again, in the forward direction, the meter should read about 300 500 ohms, and in the reversed bias direction, over one megohm. In no case should the meter indicate a short or an open condition.

Serial Number

Equipment List

Voltmeter - Simpson 260 or equal
Wide Band Oscilloscope - Tektronix 465 or equal
Vectorscope - Tektronix 520A or equal
Audio Signal Generator - Hewlett Packard 200 CD or equal
AC Voltmeter - Hewlett Packard Model 334A or equal
Sweep Generator - Kay Model 154C or equal
Staircase Generator - ADC Model 1108 or equal
The tests outlined here are fundamental and do not include crosstalk, signal-to-noise, bounce, dc, chrominance/luminance delay, etc. These are test usually conducted at the factory and witnessed by the customer.

Power Supply (ADC Model 501)

1. Apply ac power and check the:
+12 volt supply

- 12 volt supply
(+11.5 to +12.5 volts)
+6 volt supply
(-11.5 to -12.5 volts)
\qquad
(+5.75 to +6.25 volts)

2. Connect the power cable to the 900 matrix and measure ripple on the supplied:

+12 volts	(Less than $5 \mathrm{mV} \mathrm{p}-\mathrm{p})$
-12 volts	(Less than $5 \mathrm{mV} \mathrm{p}-\mathrm{p})$
+6 volts	(Less than $5 \mathrm{mV} \mathrm{p}-\mathrm{p})$

3. Reduce the line voltage (Variac) until the ripple increases by 5 mV .
(Less than 105 volts ac) \qquad
4. Connect the Simpson 260 VOM across the +12 volt supply, remove cable to matrix.
5. Check the +12 volt power supply short circuit protection by shorting between +12 volts and ground.
6. Repeat steps 4 and 5 for the -12 volt and +6 volt supplies.

Matrix
7. Reconnect power cable to matrix.
8. Insert 1 volt $p-p$ sweep signal on input 1 and terminate.
9. Insert +8 dBm audio signal on audio input 1 and terminate.
10. Route input 1 through output 1 .
ll. Adjust output 1 VIDEO GAIN control until the video output level is 1 volt $p-p$.
12. Adjust output 1 FREQUENCY RESPONSE controls while observing the output response at:

5 MHz	$(\pm 0.1 \mathrm{~dB})$
8 MHz	$(\pm 0.5 \mathrm{~dB})$
10 MHz	(Less than $-1 \mathrm{~dB})$

\qquad
8 MHz
$(+0.5 \mathrm{~dB})$
10 MHz

$$
\text { Less than }-1 \mathrm{~dB})
$$

\qquad
13. Replace the sweep signal with a 1 volt $p-p$ staircase signal modulated with 20 IEEE units of subcarrier and measure the differential gain through the connected routing path.
(Less than 0.5\%)
14. Measure differential phase through the same path.
(Less than 0.5°)
15. Adjust the AUDIO GAIN control until the audio output level is +8 dBm into 600 ohms.
16. Using the H-P 334 A , measure distortion.

20 Hz (Less than 0.5\%)
1 kHz
(Less than 0.5\%)
20 kHz
(Less than 0.5\%)
17. Using the H-P 334A, measure response.

20 Hz
$(\pm 0.5 \mathrm{~dB})$
1 kHz
$(0.0 \mathrm{~dB})$
20 kHz
$(\pm 0.5 \mathrm{~dB})$ \qquad
18. Repeat steps 8 to 17 for inputs 2 through 20. Make no adjustments except Rll on each crosspoint card to equalize path length delay.
19. Route input 1 to output 2. Insert 1 volt $p-p$ sweep signal and +8 dBm audio signal in input 1.
20. Adjust output 2 VIDEO GAIN control until the video output level is 1 volt $p-p$.
21. Adjust output 2 FREQUENCY RESPONSE controls while observing the output response at:

5 MHz	$(\pm 0.1 \mathrm{~dB})$
8 MHz	$(\pm 0.5 \mathrm{~dB})$
10 MHz	$($ Less than $-1 \mathrm{~dB})$

22. Replace the sweep signal with a 1 volt $p-p$ staircase signal modulated with 20 IEEE units of subcarrier and measure the differential gain through output .

(Less than 0.5\%)
23. Measure differential phase through output 2.
(Less than 0.5°)

24. Adjust the AUDIO GAIN control until the audio output level is +8 dBm into 600 ohms.

25. Using the H-P 334 A , measure distortion.

20 Hz	(Less than $0.5 \%)$
1 kHz	(Less than 0.5%)
20 kHz	(Less than 0.5%)

26. Using the H-P 334 A , measure response.
$20 \mathrm{~Hz} \quad(\pm 0.5 \mathrm{~dB})$
$1 \mathrm{kHz} \quad(0.0 \mathrm{~dB})$
$20 \mathrm{kHz} \quad(\pm 0.5 \mathrm{~dB})$
27. Repeat steps 19 through 26 sequentially, routing input 1 through the remaining outputs.

Date \qquad Technician \qquad

The operational tests have now been completed. During system test, ADC checks response, differential gain and phase, etc., for every crosspoint (900 series only) in the system. These test results are included in the system manual. In the event that a problem occurs, put the subject card on its extender and use the Tektronix 465 to trace the video or audio signal to or through the suspected problem area. Use the techniques outlined in the first part of this section to replace any failed solid state components.

SECTION 7 - COMPONENT LAYOUTS, PARTS LISTS AND WIRING LISTS

Component Layouts

1. 1×10 Crosspoint, Monolithic 1059300013
2. Audio/Video Output Amplifier - 9102M 1059300014
3. Component Ass'y, Rear Panel 1039300005
4. Series 900 Rear Panel (photograph)
5. Strobe Conditioning \& Scan Control 1059300008
6. Random Sync Strobe Generator 1059300006
7. 501 Power Supply - 900 Matrix 1092740003

Wiring Lists

l. 900 Matrix - Audio Input
2. 900 Matrix - Audio Output
3. Matrix Control - 20 Pin Connector, Jl \& J2
4. Matrix - Audio In, Connector J3 \& J4
5. Matrix Output Tally - 34 Pin Connector, J5
6. Power Connector - 14 Pin Connector, J8
7. Matrix Input Tally - 34 Pin Connector, J6
8. Matrix - Audio Out, Connector 3, J7

Parts Lists

1. 20×10 Routing Switcher Motherboard - 9103
2. Rear Panel - 9104
3. Strobe Conditioning \& Scan Control
4. Random Sync Strobe Generator
5. 900 Matrix Power Supply

PIN	DESCRIPTION		PIN	DESCRIPTION	
A	Red	1	T	Red	6
B	Black	1	U	Black	6
C	Shield	1	V	Shield	6
D	Red	2	W	Red	7
E	Black	2	X	Black	7
F	Shield	2	Y	Shield	7
H	Red	3	2	Red	8
J	Black	3	AA	Black	8
K	Shield	3	BB	Shield	8
L	Red	4	CC	Red	9
M	Black	4	DD	Black	9
N	Shield	4	EE	Shield	9
P	Red	5	FF	Red	10
R	Black	5	HH	Black	10
S	Shield	5	JJ	Shield	10

900 MATRIX
 TITLE: Audio Output
 CONN: 50 Pin Amp

PIN	DESCRIPTION		PIN	DESCRIPTION	
A	Red	1	T	Red	6
B	Black	1	U	Black	6
C	Shield	1	V	Shield	6
D	Red	2	W	Red	7
E	Black	2	X	Black	7
F	Shield	2	Y	Shield	7
H	Red	3	Z	Red	8
J	Black	3	a	Black	8
K	Shield	3	b	Shield	8
L	Red	4	c	Red	9
M	Black	4	d	Black	9
N	Shield	4	e	Shield	9
P	Red	5	f	Red	10
R	Black	5	h	Black	10
S	Shield	5	j	Shield	10

NOTE: Only Audio Outputs 8 and 9 are used
in this system.

MATRIX CONTROL

20 Pin Connector
Jl - Male (201356-1)
J2 - Female (200346-2)

COLOR

A	X Tens l	Brn
B	X Tens 2	Wht/Blk
C	X Tens 4	Wht/Red
D	X Tens 8	Wht/Orn
E	X Units 1	Wht/Yel
F	X Units 2	Wht/Grn
H	X Units 4	Wht/Blu
J	X Units 8	Wht/Vio
K	Y Tens l	Wht/Gry
L	Y Tens 2	Wht/Blk/Brn
M	YTens 4	Wht/Blk/Red
N	Y Tens 8	Wht/Blk/Orn
P	Y Ones 1	Wht/Blk/Yel
R	Y Ones 2	Wht/Blk/Grn
S	YOnes 4	Wht/Blk/Blu
T	Y Ones 8	Wht/Blk/Vio
U	Strobe	Wht/Blk/Gry
V	Ground	Blk
W	+5 (J2 Only)	Grn

MATRIX - AUDIO IN

Connector J3 and J4 - Female 300838-2

PIN \#	DESCRIPTION	DESCRIPTION	COLOR
	I3	J4	
A	Audio In 1	Audio In 11	Vio
B	Audio In 1	Audio In 11	Gry
C	Audio In 1	Audio In 11	Blk
D	Audio In 2	Audio In 12	Vio
E	Audio In 2	Audio In 12	Gry
F	Audio In 2	Audio In 12	Blk
H	Audio In 3	Audio In 13	Vio
J	Audio In 3	Audio In 13	Gry
K	Audio In 3	Audio In 13	Blk
L	Audio In 4	Audio In 14	Vio
M	Audio In 4	Audio In 14	Gry
N	Audio In 4	Audio In 14	Blk
P	Audio In 5	Audio In 15	Vio
R	Audio In 5	Audio In 15	Gry
S	Audio In 5	Audio In 15	Blk
T	Audio In 6	Audio In 16	Vio
U	Audio In 6	Audio In 16	Gry
V	Audio In 6	Audio In 16	Blk
W	Audio In 7	Audio In 17	Vio
X	Audio In 7	Audio In 17	Gry
Y	Audio In 7	Audio In 17	Blk
Z	Audio In 8	Audio In 18	Vio
AA	Audio In 8	Audio In 18	Gry
BB	Audio In 8	Audio In 18	Blk
CC	Audio In 9	Audio In 19	Vio
DD	Audio In 9	Audio In 19	Gry
EE	Audio In 9	Audio In 19	BIk
FF	Audio In 10	Audio In 20	Vio
HH	Audio In 10	Audio In 20	Gry
JJ	Audio In 10	Audio In 20	Blk

MATRIX
OUTPUT TALLY
34 Pin Connector - Female 200838-2

J5

PIN \#	DESCRIPTION		COLOR
A	Bus Tally 1		Brn
B	Bus Tally 2		Orn
C	Bus Tally 3		Vio
D	Bus Tally 4		Gry
E	Bus Tally 5		Wht/Blk
F	Bus Tally 6		Wht/Brn
H	Bus Tally 7		Wht/Red
J	Bus Tally 8		Wht/Orn
K	Bus Tally 9		Wht/Yel
L	Bus Tally 10		Wht/Grn

POWER CONNECTOR
14 Pin Connector - Male
201355-1
J8

PIN \#	DESCRIPTION		COLOR
A	+5	Grn	
B	+5	Grn	
C			
D			
E	+12	Blu	
F	+12	Blu	
H	-12	Wht	
J	-12	Wht	
K			
L			
M			
N			
P		Gnd	Blk
R	Gnd	Blk	

MATRIX
INPUT TALLY
34 Pin Connector - Female 200838-2

J6

PIN \# DESCRIPTION COLOR

A	Row Tally 1	Brn
B	Row Tally 2	Orn
C	Row Tally 3	Vio
D	Row Tally 4	Gry
E	Row Tally 5	Wht/Blk
F	Row Tally 6	Wht/Brn
H	Row Tally 7	Wht/Red
J	Row Tally 8	Wht/Orn
K	Row Tally 9	Wht/Yel
L	Row Tally 10	Wht/Grn
M	Row Tally 11	Wht/Blu
N	Row Tally l2	Wht/Vio
P	Row Tally 13	Wht/Blk/Brn
R	Row Tally l4	Wht/Blk/Red
S	Row Tally l5	Wht/Blk/Orn
T	Row Tally l6	Wht/Blk/Yel
U	Row Tally l7	Wht/Blk/Grn
V	Row Tally 18	Wht/Blk/Blu
W	Row Tally l9	Wht/Blk/Vio
X	Row Tally 20	Wht/Blk/Gry

Connector 3 - Female

 201358-1$J 7$

PIN \#	DESCRIPTION	
		COLOR
A	Audio Out 1	Red
B	Audio Out I	Black
C	Audio Out I	Shield
D	Audio Out 2	Red
E	Audio Out 2	Black
F	Audio Out 2	Shield
H	Audio Out 3	Red
J	Audio Out 3	Black
K	Audio Out 3	Shield
L	Audio Out 4	Red
M	Audio Out 4	Black
N	Audio Out 4	Shield
P	Audio Out 5	Red
R	Audio Out 5	Black
S	Audio Out 5	Shield
T	Audio Out 6	Red
U	Audio Out 6	Black
V	Audio Out 6	Shield
W	Audio Out 7	Red
X	Audio Out 7	Black
Y	Audio Out 7	Shield
Z	Audio Out 8	Red
a	Audio Out 8	Black
b	Audio Out 8	Shield
C	Audio Out 9	Red
d	Audio Out 9	Black
e	Audio Out 9	Shield
f	Audio Out l0	Red
h	Audio Out l0	Black
j	Audio Out l0	Shield

20×10 Routing Switcher Motherboard - 9103

Quantity
ADC Part Number DescriptionPer Unit

2270000270
2517220002
2517220005
3541110001
3048000006
3048000010
7620000012
3040000006
20×10 Routing Switcher M.B. l
4.7/35 Capacitor 3

68/15 Capacitor 6
lN914 Diode 20
5-583407-1 58 Pin Conn. 20
2-583407 Connector 10
583671-1 Card Guide 50
Key Plugs 30

PARTS LIST

Rear Panel - 9104

ADC Part Number	Description	Quantity Per Unit
2270000276	9104 Rear Panel	1
2132750053	SN74L42 I.C.	14
213270026	SN7475 I.C.	20
2132750051	SN74L02	6
2132750036	SN74154 I.C.	1
2132750032	SN74121 I.C.	1
2132750009	SN7404 I.C.	1
2132750004	SN7400 I.C.	2
2131220004	UGJ7805 V. REG.	2
2513720035	470 pF DM-15 CAP	1
2517220002	4.7/35 KEMET CAP	4
2517220005	68/15 KEMET CAP	2
2515250003	. 1/10 UK10 CAP	3
7781270048	IK RESISTOR	21
7781270064	4.7K RESISTOR	1
7781270040	470 OHMS RESISTOR	2
7781270034	270 OHMS RESISTOR	1
3044000006	583640-3 24 PIN	1
3044000022	ME2-16-1-WGB	46
3044000019	ME2-14-1-WGB	10
3047000020	201298-1 14 PIN F	1
3047000021	201355-1 14 PIN M	1
3046000026	201378-2 SHIEID LG	1
3046000027	201360-2 SHIELD ST	1
3047000029	200289-2 GPIN M	4
3046000022	200390-2 GPIN F	4
3046000025	201921-1 LKNG SPG M	4
3047000030	201922-1 LKNG SPG F	4
3047000022	200346-2 20 PIN F	2
3046000017	201356-1 20 PIN M	2
3046000038	201380-2 SHIELD ST	4
3047000023	200838-2 34 PIN F	4
3046000018	201357-1 34 PIN M	4
3046000029	201571-1 SHIELD LG	4
3046000031	200517-2 SHIELD ST	4

PARTS LIST

Rear Panel - 9104...continued

ADC Part Number		Description
3047000033		Per Unit
3047000028		$200871-2$ J SCR LG M

Strobe Conditioning \& Scan Control

ADC Part Number	Description	Quantity Per Unit
2270000321	PC Card	1
2132750009	7404 Integrated Ckt	1
2132750019	7445 Integrated Ckt	1
2132750055	74221 Integrated Ckt	1
2132750056	74173 Integrated Ckt	20
2132750058	74190 Integrated Ckt	1
2515150003	$1 \mathrm{uF} / 3 \mathrm{~V}$ UK-105 Capacitor	1
2515330002	. 1/50 Capacitor (Note: . $1 / 50$ replaces . $1 / 10$)	6
2517220006	150/6 Capacitor	4
7781270048	1 K ohms RC07 Resistor	22
7781270060	3.3K ohms RC07 Resistor	1
7781270072	10K ohms RC07 Resistor	1
7853330014	5K ohms 3389P-1-502	1
8912110007	2N4124 Transistor	1
Random Sync Strobe Generator		
2270000334	PC Card	1
2517220001	1/35 Capacitor	1
2513720036	500 pF DM-15 Capacitor	1
7781270026	100 ohm RC07	1
7781270048	1K ohm RC07	2
7781270052	1.5 K ohm RC07	1
7853330016	20K 3389P-1-203 Pot.	1
8912110007	2N4124 Transistor	1
8911310002	2N6027 Put Unijunction	1

PARTS LIST

900 Matrix Power Supply

[^0]: - フ.zn - anel L - fow level

[^1]: NOTE 1: Voltage veluat afe with renget to the natwork goound ierminal.

