INETRUCTION MANUAL

FC-30
SCA GENERATOR

BRDADCAST ELECTRONICS, INC. onTCC

IMPORTANT INFORMATION

EQUIPMENT LOST OR DAMAGED IN TRANSIT

When delivering the equipment to you, the truck driver or carrier's agent will present a receipt for your signature. Do not sign it until you have (a) inspected the containers for visible signs of damage and (b) counted the containers and compared with the amount shown on the shipping papers. If a shortage or evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.

Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Clainis for loss or damage will not be honored without proper notification of inspection by the carrier.

TECHNICAL ASSISTANCE AND REPAIR SERVICE

Technical assistance is available from Broadcast Electronics by letter or prepaid telephone or telegram. Equipment requiring repair or overhaul should be sent by common carrier, prepaid, insured and well protected. Do not mail equipment. We can assume no liability for inbound damage, and necessary repairs become the obligation of the shipper. Prior arrangement is necessary. Contact Customer Service Department for a Return Authorization.

FOR TECHNICAL ASSISTANCE
Phone (217) 224-9600 Customer Service

WARRANTY ADJUSTMENT

Broadcast Electronics, Inc. warranty is included in the Terms and Conditions of Sale. In the event of a warranty claim, replacement or repair parts will be supplied F.O.B. factory. At the discretion of Broadcast Electronics, the customer may be required to return the defective part or equipment to Broadcast Electronics, Inc. F.O.B. Quincy, Illinois. Warranty replacements of defective merchandise will be billed to your account. This billing will be cleared by a credit issued upon return of the defective item.

RETURN, REPAIR AND EXCHANGES

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to circumstances and reasons when requesting return of merchandise. All returned merchandise must be sent freight prepaid and properly insured by the customer.

REPLACEMENT PARTS

Replacement and Warranty Parts may be ordered from the address below. Be sure to include equipment model and serial number and part description and part number.

Broadcast Electronics, Inc.
4100 N. 24 th St., P.O. Box 3606
Quincy, Illinois 62305
Tel: (217) 224-9600
Telex: 25-0142
Cable: BROADCAST

PROPRIETARY NOTICE

This document contains proprietary data of Broadcast Electronics, Inc. No disclosure, reproduction, or use of any part thereof may be made except by prior written permission.

MODIFICATIONS
Broadcast Electronics, Inc. reserves the right to modify the design and specifications of the equipment in this manual without notice. Any modifications shall not adversely affect performance of the equipment so modified.
PARAGRAPH PAGE NO.
SECTION I
1-11-5
Equipment Description 1
Specifications 1
SECTION II
2-12-42-62-8
Unpacking3
Environmental Requirements 3
Installation 4
Placement 4
Wiring 4
Initial Checkout 6
SECTION III
3-13-8
Operation 7
Controls and Indicators 7
SECTION IV4-1Theory of Operation10
SECTION V

5-1
5-4
5-7
5-9
5-19
5-40
5-43
5-51
First Level Maintenance 10
Second Level Maintenance 13
Adjustments 13
Modulation Display 13
Modulation 14
Troubleshooting 16
Component Replacement 16
Parts Lists and Drawings 20
ILLUSTRATIONS
FIGURE PAGE NO.1
1
FC-30 SCA Generator
5
SCA Generator Wiring 8
SCA Generator Block Diagram 11
Modulation Calibration Adjustment 15
Semiconductor Terminal Designation Diagrams 18

TABLE
1
2
3
4
5
6
7

PAGE NO.
Specifications
SCA Generator Controls and Indicators
2
SCA Generator Troubleshooting 17
FC-30 SCA Generator 21
Access Cable Assembly
Accessory Kit
21
SCA Generator Circuit Board Assembly

22
22

1-1. EQUIPMENT DESCRIPTION.
1-2. The Broadcast Electronics Model FC-30 is a high-quality SCA generator suited for transmission of audio or dc coupled data on a multiplexed subcarrier (see Figure l). Features of the FC-30 include an extremely stable oscillator providing very low FM noise and high modulation linearity. A controlled-decay subcarrier muting system eliminates receiver noise resulting from slow-to-act receiver squelch circuits; a fault common to many SCA generator designs.

597-0008-1
FIGURE 1. FC-30 SCA GENERATOR
1-3. The FC-30 allows full remote control operation utilizing optically isolated inputs and outputs. All control inputs are configured to accept either positive or negative polarity control logic. A tapped dual-primary power transformer and a fused voltage selector/filter assembly allows operation from a wide range of ac input potentials.

1-4. The unit requires $13 / 4$ inches (4.45 cm) of 19 inch (48.26 cm) vertical rack space for mounting. The FC-30 contains extensive RFI protection which allows mounting in the transmitter cabinet or in a separate enclosure. Input and output connections are made to a terminal strip and BNC connectors mounted to the SCA generator rear panel. A convenient subcarrier test connector along with all operating controls and indicators are located on the front panel. The SCA generator is available in one basic configuration as follows:

PART NO.
909-0051
SCA Generator, 97 to 133 V ac or 194 to 266 V ac, Single Phase, $50 / 60 \mathrm{~Hz}$ with Accessory Kit consisting of: access cable, line cord, rack mounting hardware, and $1 / 16$ Ampere fuse for 250 volt operation.

1-5.
 SPECIFICATIONS.

1-6. Refer to Table 1 for electrical and physical specifications relative to operation of the FC-30 SCA generator.

TABLE 1. ELECTRICAL AND PHYSICAL SPECIFICATIONS (Sheet 1 of 2)

PARAMETER	SPECIFICATIONS
SUBCARRIER FREQUENCY	$67 \mathrm{kHz}(39 \mathrm{kHz}$ to 95 kHz available on special order).
SUBCARRIER FREQUENCY STABILITY	$\begin{aligned} & \pm 0.5 \%(335 \mathrm{~Hz} \text { at } 67 \mathrm{kHz}),+32^{\circ} \mathrm{F} \text { to } \\ & \quad+122^{\circ} \mathrm{F}\left(\emptyset^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}\right) . \end{aligned}$

SUBCARRIER HARMONIC CONTENT SUBCARRIER OUTPUT

SUBCARRIER TEST OUTPUT
SUBCARRIER ENVELOPE DECAY

MODULATION CAPABILITY
FM NOISE

INPUTS:
AUDIO

DATA

PREEMPHASIS: AUDIO

DATA
FREQUENCY RESPONSE: AUDIO

DATA
LOW-PASS FILTER

TOTAL HARMONIC DISTORTION
INTERMODULATION

CROSSTALK SCA TO STEREO

Adjustable, 0.5 V p-p to $4.0 \mathrm{~V} \mathrm{p}-\mathrm{p}$ at 600 Ohms, Resistive, Unbalanced.
5.0 V p-p at 10 k Ohms, Resistive.

Greater than 100 Milliseconds from 90% to 10% subcarrier level.
$\pm 20 \%$ of Subcarrier Frequency, Maximum.
Less than 72 dB (referenced at $\pm 6 \mathrm{kHz}$ deviation modulated at 400 Hz with 150 microsecond deemphasis).

Adjustable from +10 dBm to -10 dBm for $\pm 6 \mathrm{kHz}$ deviation at 400 Hz , ac coupled, 600 Ohms, Resistive.

Adjustable from 1.0 V p-p to 4.0 V p-p for $\pm 6 \mathrm{kHz}$ deviation, dc coupled. 10 k Ohm, Supplied with 75 Ohm Resistor Termination.

150 Microseconds (75 microseconds with internal jumper).

No preemphasis.
$\pm 0.5 \% \mathrm{~dB}, 10 \mathrm{~Hz}$ to 10 kHz , exclusive of low-pass filter.
$\pm 0.5 \mathrm{~dB}$, dc to 10 kHz .
Sixth Order, -3 dB at 4.3 kHz (other filters available on special order). May be bypassed.
Less than 0.5% throughout pass band.
Less than $0.5 \% 60 \mathrm{~Hz}$ to $7 \mathrm{kHz}, 1: 1$ Ratio (low-pass and pre-emphasis filter bypassed).
-60 dB or better. Below 100% modulation of left or right using 75 Microsecond deemphasis and FX-30 Exciter.

TABLE 1. ELECTRICAL AND PHYSICAL SPECIFICATIONS (Sheet 2 of 2)

PARAMETER	SPECIFICATIONS
CROSSTALK STEREO TO SCA	-50 dB or better below $\pm 6 \mathrm{kHz}$ deviation of SCA using 150 Microseconds deemphasis, FX-30 Exciter and FC-30 Stereo Generator.
AUDIO MUTING LEVEL	Adjustable from 10 dB to 30 dB below program level.
AUDIO MUTING DELAY.	Adjustable from 0.5 seconds to 10.0 seconds.
OPERATING TEMPERATURE RANGE	$+32^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left(\theta^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
MAXIMUM ALTITUDE	\emptyset to 15,000 Feet (4572 m) above sea level.
HUMIDITY	95\%, Non-condensing.
DIMENSIONS: HEIGHT	1.75 inches (4.5 cm).
WIDTH	19.0 inches (48.3 cm).
DEPTH \quad	9.0 inches (22.9 cm).
AC POWER REQUIREMENTS	97 to 133 V ac or 194 to 266 V ac, $50 / 60 \mathrm{~Hz}, 7$ Watts.
WEIGHT: UNPACKED	4.5 pounds (2 kg) .

SECTION II

2-1. UNPACKING.

2-2. The equipment becomes the property of the customer when the equipment is delivered to the carrier. Carefully unpack the SCA generator. Perform a visual inspection to determine that no apparent damage has been incurred during shipment. All shipping materials should be retained until it is determined that the unit has not been damaged. Claims for damaged equipment must be promptly filed with the carrier or the carrier may not accept the claim.

2-3. The contents of the shipment should be as indicated on the packing lists. If the contents are incomplete, or if the unit is damaged electrically or mechanically, notify both the carrier and Broadcast Electronics, Inc.

2-4. ENVIRONMENTAL REQUIREMENTS.
2-5. Table 1 provides environmental conditions which must be considered prior to SCA generator installation.

2-6. INSTALLATION.

2-7. Each SCA generator is operated, tested, and inspected at the factory prior to shipment and is ready for installation when received. Installation is accomplished in three steps: 1) placement, 2) wiring, and 3) initial checkout.

2-8. PLACEMENT.
2-9. The SCA generator requires $13 / 4$ inches (4.45 cm) of 19 inch (48.26 cm) rack space and may be mounted in any convenient location within reach of signal and power cables. The signal cables should be as short and direct as possible. The SCA generator should not be mounted directly above heat-generating equipment. It should also be noted that the more constant the ambient temperature in which the SCA generator operates, the greater the stability of the SCA generator oscillator. Otherwise no special requirements need be observed.

2-10. WIRING.
WARNING
ENSURE AC POWER IS DISCONNECTED BEFORE PROCEEDING.

2-11. Set the SCA generator on a work surface.
2-12. Remove the top cover and assure the following connectors are correctly positioned:
A. REMOTE MODE CONTROL POLARITY SELECT. Plug P3 onto J 3 if negative polarity control logic is to be used or J4 if positive polarity control logic is to be used (see Figure 2).
B. REMOTE MODE INDICATOR POLARITY SELECT. Plug P5 onto J5 if negative polarity output is desired or $J 6$ if positive polarity output is desired (see Figure 2).
C. PREEMPHASIS SELECTION. P8 must be inserted onto 18 if 150 microsecond preemphasis is desired. If 75 microsecond preemphasis is desired, P8 must be positioned over one pin only of $\mathrm{J8}$ so that the connection across J 8 is opened.
D. DATA INPUT FILTER BYPASS SELECT. If the data input is to be used and no low-pass filter is desired, insert P9 onto 39, pins 2 and 3. If the low-pass filter in the data path is desired, insert Pg onto Jg , pins 1 and 2.
E. AUDIO LOW-PASS FILTER CUT-OFF FREQUENCY SELECT. Typically the low-pass filter in the SCA generator is configured for a cut-off frequency of 4.3 kHz but may be changed if desired. Refer to the SCA generator circuit board schematic diagram for further information.

2-13. Replace the top cover.

FIGURE 2. SCA GENERATOR WIRING

2-14. Remove the fuse from the ac line voltage selector on the SCA generator rear panel.

2-15. Ensure the primary ac line voltage with which the SCA generator will be used is visible on the ac line voltage selector circuit board (100V, $115 / 120 \mathrm{~V}, 220 \mathrm{~V}$, or $230 / 240 \mathrm{~V}$).

2-16. If the ac line voltage must be changed, remove the ac line voltage selector circuit board with a small pair of needle-nose pliers. Reinsert the circuit board so that the correct ac line voltage is visible when the circuit board is inserted into the receptacle.

2-17. Two fuses are shipped with the SCA generator. A 1/8 Ampere fuse is required for the $100 / 115$ volt range and a $1 / 16$ Ampere fuse is required for the $220 / 240$ volt range. Both fuses must be slow-blow types.

2-18. Install the correct fuse for operation at the desired ac line voltage.

2-19. Mount the SCA generator in the rack.
2-20. Wire the audio inputs with 600 Ohm two-conductor shielded wire or the data input with 50 or 75 Ohm coaxial cable. To change input impedance of the data or audio inputs, refer to SCA Generator Block Diagram.

2-21. Wire the remote mode control inputs and the remote mode indicator outputs (see Figure 2).

2-22. INITIAL CHECKOUT.
2-23. Depress the front panel OFF switch.
2-24. Connect an ac power source to the unit. The OFF indicator will illuminate.

2-25. Depress the $O N$ switch. The $O N$ indicator will illuminate.
2-26. Connect a frequency counter to the SUBCARRIER TEST connector. Adjust the SUBCARRIER FREQ control to obtain the subcarrier frequency desired.

2-27. Adjust the SUBCARRIER INJECT control to obtain the level of SCA injection desired as indicated by the station modulation monitor (typically 8 to 10 percent). .

2-28. Apply programming to the SCA generator as follows:
(AUDIO) +10 dBm to -10 dBm @ 600 Ohms.
(DATA) 1.0 V to 4.0 V p-p.
2-29. Adjust the DATA or AUDIO MODULATION control (as applicable) to obtain the modulation level desired as indicated by the station modulation monitor. Normally, $\pm 6 \mathrm{kHz}$ deviation of the SCA is considered to be 100% modulation.

2-30. The $10 \%-100 \%$ MODULATION indicator will flash intermittently as the modulation level changes to provide a convenient indication of modulation activity. The SCA generator will normally be modulated 100% with an audio input in which case the $100 \%+$ MODULATION indicator will flash intermittently as the modulation level peaks at 100% but will not remain illuminated unless the level exceeds 100%. The red 100% LED is factory calibrated to illuminate at a deviation of $\pm 6 \mathrm{kHz}$.

2-31. The MUTE LEVEL and MUTE DELAY controls have an effect only when the AUTO switch is depressed and should be adjusted as desired:
A. The MUTE DELAY control adjusts the time delay between the end of the programming and when the carrier is muted. This delay is adjustable from one-half second to ten seconds (typically set for five seconds).
B. The MUTE LEVEL control adjusts circuitry which initiates a mute delay timing sequence whenever the audio input falls below a preset level. The MUTE LEVEL control is factory adjusted for 20 dB below 100\% modulation with an audio input.

2-32. Depress the AUTO switch. The AUTO indicator will illuminate.
2-33. The unit is now ready for service.

SECTION III

3-1. OPERATION.
3-2. The following procedure assumes the SCA generator is completely installed and is free of any discrepancies.

3-3. Depress the OFF switch. The SCA generator will deenergize in a standby mode with no output. The OFF indicator will illuminate.

3-4. Apply programming to the SCA generator.
3-5. If continuous carrier output with no muting is desired, depress the ON switch. The ON indicator will illuminate and the SCA generator will be ready for service.

3-6. If it is desired that the carrier automatically mute with or without delay when programming is removed, depress the AUTO switch. The AUTO indicator will illuminate and the SCA generator will be ready for service.

3-7. The two mute adjustments have an effect only in the automatic mode of operation. The MUTE LEVEL control adjusts the level at which the carrier will mute and the MUTE DELAY control adjusts a variable delay associated with the muting circuit to compensate for slow-to-act receiver squelch circuits. These two controls should be adjusted for best operation by the user in each particular situation.

3-8. CONTROLS AND INDICATORS.
3-9. Refer to Figure 3 for the location of the controls and indicators associated with the SCA generator. The function of each control or indicator is described by Table 2.

597-0008-3

FIGURE 3. SCA GENERATOR CONTROLS AND INDICATORS.

TABLE 2. SCA GENERATOR CONTROLS AND INDICATORS
(Sheet 1 of 2)

$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	NOMENCLATURE	FUNCTION
1	MUTE LEVEL Control (R67)	Presets an input signal threshold level below which the SCA generator output is muted. Operates only when the AUTO indicator is illuminated.
2	MUTE DELAY Control (R95)	Adjusts a timed delay of one-half to ten seconds initiated by the mute level circuitry which delays muting of the SCA carrier to allow the SCA receiver squelch circuitry time to react. Operates only when the AUTO indicator is illuminated.
3	SUBCARRIER FREQ Control (R89)	Adjusts the subcarrier output frequency.
4	SUBCARRIER INJECT Control (R91)	Adjusts the subcarrier output level.
5	DATA MODULATION Control (R13)	Adjusts the data signal input level.
6	AUDIO MODULATION Control (R35)	Adjusts the audio signal input level.
7	```10%-100% MODULATION Indicator (DS5)```	Illuminates to indicate the modulation level of the subcarrier is 10% or greater.
8	$100 \%+$ MODULATION Indicator (DS4)	Illuminates to indicate subcarrier modulation level is 100% or greater.
9	OFF Indicator (DS2)	Illuminates to indicate power is applied to the SCA generator and the unit is in standby with no output.
10	ON Indicator (DS3)	Illuminates to indicate the SCA generator carrier will not be muted when programming halts.
11	AUTO Indicator (DS1)	Illuminates to indicate the SCA generator carrier will be automatically muted when programming halts.

TABLE 2. SCA GENERATOR CONTROLS AND INDICATORS (Sheet 2 of 2)

$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	NOMENCLATURE	FUNCTION.
12	SCA Generator ON/ OFF/AUTO/REMOTE Mode Switch (S1)	Provides local selection of the SCA generator operational modes. When all three switch sections are out, remote control is enabled. OFF switch (S1C): Configures equipment in standby mode with no output. ON switch (S1B): Configures equipment for operation in manual mode. Automatic muting inoperative. AUTO switch (S1A): Configures equipment for operation in automatic mode. Automatic muting operational.
13	SUBCARRIER TEST Receptacle (J10)	Provides a convenient front-panel SCA carrier test point. ($5 \mathrm{~V} \mathrm{p}-\mathrm{p}$ into 10 k)

SECTION IV

4-1. THEORY OF OPERATION.
4-2. Theory of operation for the SCA generator is presented by Figure 4.

> SECTION V.

5-1. FIRST LEVEL MAINTENANCE.

WARNING
DISCONNECT POWER PRIOR TO SERVICING.

5-2. Maintenance of the SCA generator falls into the category of good housekeeping and is limited to whatever cleaning may be necessary and checking the performance level of the unit.

5-3. On a regular basis, clean the equipment of accumulated dust, check for overheated components, and tighten loose hardware as required. Ensure the input and output connections are secure.

5-4. SECOND LEVEL MAINTENANCE.
5-5. Second level maintenance consists of procedures required to restore the equipment to satisfactory operation after a fault has occurred.

5-6. The maintenance philosophy of the SCA generator consists of problem isolation to a specific assembly with subsequent troubleshooting as required to isolate specific defective components. If desired, an entire assembly may be returned to the factory for repair or exchange.

5-7. ADJUSTMENTS.
5-8. The following text provides adjustment procedures for all controls which are not described in Section II, Installation.

5-9. MODULATION DISPLAY. The modulation display calibration control (R70) will not normally require adjustment in the field unless the modulation or metering circuitry has been repaired. To adjust the modulation display calibration control (R70), proceed as follows:

5-10. Required Equipment. The following equipment is required for adjustment of the modulation display calibration control.
A. No. 1 Phillips Screwdriver, 4 inches (10.16 cm) long.
B. Miniature Flat-Tip Screwdriver, $3 / 16$ inch (0.5 cm) tip.
C. Calibrated Single Trace Oscilloscope or Calibrated High Input Impedance Voltmeter.
D. Calibrated Audio Generator, 600 Ohm Output.

5-11. Procedure. To adjust the modulation display calibration control (R70) proceed as follows:

5-12. Remove the SCA generator from service and remove the top cover.

5-13. Adjust the audio generator to 400 Hz at approximately 2 volts RMS. $*$

5-14. Connect the audio generator to the rear panel terminal strip audio input.

5-15. Depress the ON switch and operate the SCA generator.
5-16. Measure the voltage on terminal E5 (refer to the SCA generator circuit board schematic diagram) and adjust the audio generator to obtain an indication of 6.0 volts p-p (2.12 volts RMS).

5-17. Adjust the modulation display calibration control (R70) so the $100 \%+$ MODULATION indicator just illuminates.

5-18. Remove the test equipment, replace the top cover, and return the SCA generator to service.

5-19. MODULATION. The modulation controls will not normally require adjustment in the field unless the modulation circuitry has been repaired. To adjust the modulation symmetry (R80), modulation balance (R141), and modulation calibration (R148) controls, proceed as follows:

5-20. Required Equipment. The following equipment is required for adjustment of the modulation symmetry (R80), modulation balance (R141), and modulation calibration (R148) controls:
A. No. 1 Phillips Screwdriver, 4 inches (10.16 cm) long.
B. Miniature Flat-Tip Screwdriver, $3 / 16$ inch (0.5 cm) tip.
C. Tektronix 7000 Series Oscilloscope Main Frame with Model 7L5 Plug-in Spectrum Analyzer or Equivalent.
D. Calibrated Audio Generator, 600 Ohm Output.
E. Calibrated Single-Trace Oscilloscope or Calibrated High Input Impedance Voltmeter.
F. Carbon Resistor, 620 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$.

5-21. To adjust the modulation symmetry (R80), modulation balance (R141), and modulation calibration (R148) controls, proceed as follows:

5-22. Remove the SCA generator from service and remove the top cover.

5-23. Connect a 620 Ohm resistor across the SCA OUTPUT connector or adjust the input loading on the spectrum analyzer to 600 hms

5-24. Depress the ON switch and operate the SCA generator with no signal input.

5-25. Measure the voltage across the resistor. The voltage must be less than 3.5 volts $p-p$ (1.237 VRMS). If not, adjust the SUBCARRIER INJECT control (R91) as required.

5-26. Remove the resistor and test equipment from the SCA generator.

5-27. Adjust the spectrum analyzer input impedance selector to 600 Ohms.

5-28. Connect the spectrum analyzer input to the SCA OUTPUT connector.

5-29. Adjust the spectrum analyzer so that 67 kHz appears at the far left of the display. Adjust the horizontal sweep for 20 kHz per division with resolution of 300 Hz .

5-30. Adjust the spectrum analyzer to obtain full scale deflection of the 67 kHz subcarrier.

5-31. The following three carriers will be displayed: $67 \mathrm{kHz}, 134$ kHz , and 201 kHz . The levels of the 134 kHz and 201 kHz carriers will be below the leve 1 of the 67 kHz carrier.

5-32. Adjust the modulation balance control (R141) to minimize the second harmonic at 134 kHz . The control will null the second harmonic to approximately -60 dB .

5-33. Adjust the modulation symmetry control (R80) to minimize the third harmonic at 201 kHz . The control will null the third harmonic to approximately -65 dB .

5-34. Readjust the modulation balance control (R141) and the modulation symmetry control (R80) until no further improvement is noted.

5-35. Adjust the audio generator frequency to $2.495 \mathrm{kHz} \pm 0.5 \mathrm{~Hz}$ and connect the audio generator to SCA generator terminal strip terminals 10 $(+)$ and $12(-)$.

5-36. Adjust the audio generator output amplitude so that 2.120 VRMS ± 0.01 VRMS is noted on test point TP-1 within the SCA generator.

5-37. Adjust the spectrum analyzer so that the 67 kHz subcarrier appears in the center of the display using a horizontal sweep of 2 kHz per division (see Figure 5A).

5-38. Adjust the modulation calibration control (R148) to minimize the subcarrier at 67 kHz . The control will null the subcarrier to approximately -65 dB below the two adjacent carriers (see Figure 5B). A carrier null of 45 dB or better is satisfactory.

5-39. Remove the test equipment, replace the top cover, and return the SCA generator to service.

FIGURE 5. MODULATION CALIBRATION ADJUSTMENT

5-40. TROUBLESHOOTING.
5-41. Most troubleshooting consists of visual checks. To simplify troubleshooting, the various indicators should be used to isolate a malfunction to a specific area of the SCA generator. Table 5 is provided as a general guide to SCA generator malfunctions. Figure 5 provides pin-out-diagrams for all semiconductor devices except diodes.

5-42. Once the trouble is isolated, refer to the section of this manual providing theory of operation to assist in problem resolution. All internal components are accessible through a removable top cover.

5-43. COMPONENT REPLACEMENT.
5-44. The circuit board used in the SCA generator is a double-sided board with plated through-holes. Because of the plated through-holes, solder fills the holes by capillary action. These conditions require that defective components be removed carefully to avoid damage to the board.

5-45. On all circuit boards, the adhesive securing the copper track to the board melts at almost the same temperature as solder. A circuit board track can be destroyed by excessive heat or lateral movement during soldering. Use of a small iron with steady pressure is required for circuit board repairs.

5-46. To remove a component from a double-sided circuit board, cut the leads from the body of the defective component while the device is still soldered to the board.

5-47. Grip each component lead, one at a time, with long nose pliers. Turn the board over and touch the soldering iron to the lead at the solder connection. When the solder begins to melt, push the lead through the back side of the board and cut off the bent outer end of the lead. Each lead may now be heated independently and pulled out of each hole. The holes may be cleared of solder by carefully re-heating with a low wattage iron and removing the residual solder with a soldering vacuum tool.

5-48. Install the new component and apply solder from the bottom side of the board. If no damage has been done to the plated throughholes, soldering of the top side is not required.

WARNING
WARNING
WARNING
WARNING

MOST SOLVENTS WHICH WILL REMOVE ROSIN FLUX ARE VOLATILE AND TOXIC BY THEIR NATURE AND SHOULD BE USED ONLY IN SMALL AMOUNTS IN A WELL VENTilated area, Away from flame, including cigarettes and a hot soldering iron.

OBSERVE THE MANUFACTURER'S CAUTIONARY INSTRUCTIONS.

Table 3. SCA Generator Troubleshooting

TLOT4 CN
DUAL JFET INPUT
QUAD OPERATIONAL AMPLIFIER

$4 N 33$
OPTICAL ISOLATOR LED/PHOTO TRANSISTOR TYPE

FRONT VIEW

FRONT, VIEW

LM317T
positive voltage REGULATOR

BOTTOM VIEW
EBC

2N3904 NPN TRANSISTOR 2N 3906 PNP TPANSISTOR

LM337T
negative voltage REGULATOR

TLOTZCP, TLO9ZCP
JFET INPUT
DUAL OPERATIONAL AMPLIFIER

FIGURE 6. SEMICONDUCTOR TERMINAL DESIGNATION DIAGRAMS
(Sheet 1 of 2)

MC14011 UB
CMOS QUAD 2 INPUT NAND GATE

XR 2206 CP
FUNCTION GENERATOR

MC14001 UB
CMOS QUAD 2 INPUT NOR GATE

FIGURE 6. SEMICONDUCTOR TERMINAL DESIGNATION DIAGRAMS (Sheet 2 of 2)

5-49. After soldering, remove flux with a cotton swab moistened with a suitable solvent. Rubbing alcohol is highly diluted and is not effective. Solvents are available in electronic supply houses which are useful.

5-50. The board should be checked to ensure the flux has been removed and not just smeared about. Rosin flux is not normally corrosive, but rosin will absorb enough moisture in time to become conductive and cause problems.

5-51. PARTS LISTS AND DRAWINGS.
5-52. The following parts lists and drawings are presented as aids to maintenance:

PARTS LISTS

TABLE	TITLE 4	NUMBER 5
6	FC-30 SCA Generator	$909-0051$
7	Access Cable Assembly	$947-0020$
	SCA Generator Circuit Board Assembly	$959-0051$

DRAWINGS

TITLE	$\frac{\text { NUMBER }}{}$
SCA Generator Assembly Diagram	$597-0008-5$
SCA Generator Interconnect Schematic	C909-0053
Diagram	
SCA Generator Circuit Board Schematic Diagram	D909-0111

Table 4. FC-30 SCA Generator - 909-0051

REF. DES.	DESCRIPTION	PART NO.	QTY.
C50	Capacitor Assembly, Feed-Thru, 100 pF: Kapton Dielectric Nylon Insulator	$\begin{aligned} & 409-1817 \\ & 423-6007 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
$\begin{aligned} & \text { C51 THRU } \\ & \text { C62 } \end{aligned}$	Capacitor, Ceramic, Feed-Thru, $100 \mathrm{pF} \pm 20 \%$, 500 V	008-1033	12
C63	Capacitor Assembly, Feed-Thru, 100 pF: Kapton Dielectric Nylon Insulator	409-1817	2
C64	Capacitor, Ceramic, Feed-Thru, $100 \mathrm{pF} \pm 20 \%$, 500 V	008-1033	
DS1	Indicator, LED, Yellow, 521-9176, 2.3V @ 30 mA Maximum (AUTO Indicator)	323-9225	1
DS2	Indicator, LED, Red, 521-9212, 1.7V @ 50 mA Maximum (OFF Indicator)	323-9217	1
DS3	Indicator, LED, Green, 521-9175, 2.3V @ 40 mA Maximum (ON Indicator)	323-9224	1
DS4	Indicator, LED, Red, 521-9212, 1.7V @ 50 mA Maximum ($100 \%+$ MODULATION Indicator)	323-9217	1
DS5	Indicator, LED, Green, 521-9175, 2.3 V @ 40 mA Maximum (10% - 100% MODULATION Indicator)	323-9224	1
F1, F2	Fuse, MDL, $1 / 8$ Ampere, 250V, Slow-Blow (for 120 Volt Operation)	334-0051	2
FL1	Filter, Modified, Fuse/Line 120/240V	360-6504	1
$\begin{aligned} & \mathrm{J} 8 \text { THRU } \\ & \mathrm{J} 10 \end{aligned}$	Insulated BNC Connector	417-0048	3
L1 THRU L9	Choke, Ferrite, 180 MHz , 2.5 Turns, Single Section	364-0002	9
P1	Connector, 6-Pin	417-0601	1
P2	Connector, 2-Pin	417-0499	1
P3, P5	Connector, 6-Pin	417-0601	2
P7	Connector, 8-Pin	417-0046	1
P8, P9		340-0004	2
	Pins for P1, P2, P3, P5, and P7, Crimp Type	417-8766	25
T1	Transformer, Power, $50 / 60 \mathrm{~Hz}$ Primary: Dual 115V Primary, One Winding tapped at 100 V Secondary: Dual 19V @ 0.09 Amperes	376-9852	1
TB1	Barrier Strip, 12 Terminal	412-0012	
------	Switch Cap, Gray	343-6402	3
	Accessory Kit SCA Generator Circuit Board Assembly	$\begin{aligned} & 959-0051 \\ & 917-0044 \end{aligned}$	1

Table 5. Access Cable Assembly - 947-0020

REF. DES.	DESCRIPTION	PART NO.	QTY.
P1,P2	BNC Connector for RG/58U	$417-0205$	2

Table 6. Accessory Kit - 959-0051

REF. DES.	DESCRIPTION	PART NO.	QTY.
$\cdots--$	Access Cable Assembly Fuse, MDL, 1/16 Ampere, 250V, Slow-Blow (240 Volt Operation) Line Cord	$947-0020$ $-\cdots---$	$334-0052$

Table 7. SCA Generator Circuit Board Assembly - 917-0044 (Sheet 1 of 6)

REF. DES.	DESCRIPTION	' PART NO.	QTY.
C1,C2	Capacitor, Polystyrene, 0.47 uF, 100V	038-4753	2
C3, 44	Capacitor, Electrolytic, $1000 \mathrm{uF}, 50 \mathrm{~V}$	014-1094	2
C5, 66	Capacitor, Polystyrene, 7500 pF , 50V	037-7540	2
C7 THRU	Capacitor, Electrolytic, $10 \mathrm{uF}, 25 \mathrm{~V}$	023-1076	4
C10			
C11	Capacitor, Polystyrene, 7500 pF , 50V	037-7540	1
C12,C13	Capacitor, Electrolytic, 100 UF, 25 V	023-1084	2
C14	Capacitor, Polystyrene, $7500 \mathrm{pF}, 50 \mathrm{~V}$	037-7540	1
C15	Capacitor, Mylar Film, 0.1 uF, 100 V	030-1053	1
C16	Capacitor, Polystyrene, $7500 \mathrm{pF}, 50 \mathrm{~V}$	037-7540	1
C17	Capacitor, Electrolytic, 10 UF, 25 V	023-1076	
C18	Capacitor, Polystyrene, 7500 pF , 50V	037-7540	1
C19	Capacitor, Mylar Film, 0.1 uF, 100V	030-1053	1
C20	Capacitor, Electrolytic, 100 UF, 20V, Tantalum	063-1083	1
C21	Capacitor, Electrolytic, 10 UF, 25 V	023-1076	1
C22,C23	Capacitor, Polystyrene, $7500 \mathrm{pF}, 50 \mathrm{~V}$	037-7540	2
C24	Capacitor, Mylar Film, 0.1 uF, 100 V	030-1053	1
C25	Capacitor, Electrolytic, $10 \mathrm{uF}, 25 \mathrm{~V}$	023-1076	1
C26	Capacitor, Electrolytic, $100 \mathrm{UF}, 25 \mathrm{~V}$	023-1084	1
C27	Capacitor, Mylar Film, 0.1 uF, 100 V	030-1053	1
C28	Capacitor, Electrolytic, 10 UF, 25 V	023-1076	1
C29	Capacitor, Mylar Film, $0.1 \mathrm{uF}, 100 \mathrm{~V}$	030-1053	1
C30	Capacitor, Electrolytic, 10 UF, 25V	023-1076	1
C31	Capacitor, Mica, $500 \mathrm{pF} \pm 1 \%, 500 \mathrm{~V}$	042-5021	1
C32	Capacitor, Ceramic Disc, 5 pF, 500V, NPO	001-5004	1
C33	Capacitor, Electrolytic, $10 \mathrm{uF}, 25 \mathrm{~V}$	023-1076	1
C34	Capacitor, Mylar Film, 0.1 uF, 100V	030-1053	1
C35	Capacitor, Electrolytic, 10 uF, 25 V	023-1076	1
C36	Capacitor, Mylar Film, $0.1 \mathrm{uF}, 100 \mathrm{~V}$	030-1053	1
C37	Capacitor, Ceramic Disc, $5 \mathrm{pF}, 500 \mathrm{~V}, \mathrm{NPO}$	001-5004	1
C38 THRU	Capacitor, Electrolytic, 10 UF, 25V	023-1076	3
C40 C41	Capacitor, Electrolytic, 100 UF, 25V	023-1084	1
C42	Capacitor, Mica, $0.001 \mathrm{uF}, 500 \mathrm{~V}$	041-1032	1
C43	Capacitor, Mylar Film, 0.022 uF, 200 V	031-2243	1

Table 7. SCA Generator Circuit Board Assembly - 917-0044 (Sheet 2 of 6)

REF. DES.	DESCRIPTION	PART NO.	QTY.
C44	Capacitor, Mylar Film, 0.047 UF, 100V	030-4743	1
C45	Capacitor, Mica, $100 \mathrm{pF}, 500 \mathrm{~V}$	040-1022	1
C46	Capacitor, Electrolytic, 10 uF, 25 V	023-1076	1
C47	Capacitor, Mica, $100 \mathrm{pF}, 500 \mathrm{~V}$	040-1022	1
C48	Capacitor, Electrolytic, 10 UF, 25V	023-1076	1
C49	Capacitor, Mylar Film, 0.1 uF, 100 V	030-1053	1
C65	Capacitor, Electrolytic, $10 \mathrm{uF}, 16 \mathrm{~V}$, NonPolarized	023-1075	1
D1 THRU D4	Diode, 1N4005, Silicon, 600V, 1 Ampere	203-4005	4
D5 THRU D8	Diode, 1 N 4148 , Silicon, 75 V @ 0.3 A , Fast Switching	203-4148	4
$\begin{aligned} & \text { D9 THRU } \\ & \text { D12 } \end{aligned}$	Diode, 1N4005, Silicon, 600V, 1 Ampere	203-4005	4
D13	Diode, 1N4148, Silicon, 75V @ 0.3A, Fast Switching	203-4148	1
D14,D15	Diode, 1N4005, Silicon, 600V, 1 Ampere	203-4005	2
D16,D17	Diode, 1 N 4148 , Silicon, 75 V @ 0.3 A , Fast Switching	203-4148	2
D18	Diode, 1N4005, Silicon, 600V, 1 Ampere	203-4005	1
$\begin{aligned} & \text { D19 THRU } \\ & \text { D21 } \end{aligned}$	Diode, 1N4148, Silicon, 75V @ 0.3A, Fast Switching	203-4148	3
D22	Diode, 1N4005, Silicon, 600V, 1 Ampere	203-4005	1
D23,D26	Diode, 1 N 4148 , Silicon, 75 V @ 0.3A, Fast Switching	203-4148	2
$\begin{aligned} & \text { D28 THRU } \\ & \text { D30 } \end{aligned}$	Diode, HP5082-2800, High Voltage Schottky Barrier Type, $70 \mathrm{~V}, 15 \mathrm{~mA}$	201-2800	3
D31 THRU	Diode, 1N4148, Silicon, 75 V @ 0.3A,	203-4148	5
D35 D36	Fast Switching Diode, HP5082-2800, High Voltage Schottky Barrier Type, 70V, 15 mA	201-2800	1
$\begin{aligned} & \text { D37 THRU } \\ & \text { D39 } \end{aligned}$	Diode, 1 N 4148 , Silicon, 75 V @ 0.3A, Fast Switching	203-4148	3
J1	Connector, Header, 6-Pin	417-0006-1	1
J2	Connector, Header, 2-Pin	417-4004	1
J3 THRU J6	Connector, Header, 6-Pin	417-0006-1	4
J7	Connector, Header, 8-Pin	417-0080	1
J8	Connector, Header, 2-Pin	417-4004	1
J9	Connector, Header, 3-Pin	417-0003	1
LDR1,LDR2	Optical Isolator, LDR/LED Type, VTL5C2 On Resistance: 500 Ohms Off Resistance: 1 Meg Ohm Cell Voltage: 200 V Maximum Cel1 Current: 10 to 40 mA	323-7345	2
Q1 THRU Q4	Transistor, 2N3904, Silicon, NPN, T0-92 Case	211-3904	4
Q5	Transistor, 2N3906, Silicon, PNP, T0-92 Case	210-3906	1
R1	Resistor, $620 \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-6233	1
R2	Resistor, $750 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-7523	1

Table 7. SCA Generator Circuit Board Assembly - 917-0044 (Sheet 3 of 6)

REF. DES.	DESCRIPTION	PART No.	QTY.
R3	Resistor Network, $5 \mathrm{k} 0 \mathrm{hm} \pm 1 \%, 1 / 4 \mathrm{~W}, 16$-Pin DIP	226-0500	1
(A THRU H)			
R5,R6	Resistor, 1 Meg $0 \mathrm{hmm} \pm 5 \%$, $1 / 4 \mathrm{~W}$	100-1073	2
R8,R9	Resistor, $10 \mathrm{k} 0 \mathrm{hm} \pm 5 \%$, $1 / 4 \mathrm{~W}$	100-1053	2
R10	Resistor, $1000 \mathrm{hm} \pm 5 \%, 1 / 2 \mathrm{~W}$	110-1033	1
R12	Resistor, 680 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-6833	1
R13	Potentiometer, $5 \mathrm{k} 0 \mathrm{hm} \pm 10 \%, 1 \mathrm{~W}, 10$ Turn	179-5043	1
R14	Resistor, $330 \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-3333	1
R15	Resistor, $6800 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-6833	1
R16	Resistor, $1.33 \mathrm{k} 0 \mathrm{hm} \pm 1 \%$, $1 / 4 \mathrm{~W}$	103-1331	1
R17	Resistor, $100 \mathrm{hmm} \pm 5 \%$, 1/4W	100-1023	1
R18,R19	Resistor, $4.99 \mathrm{k} 0 \mathrm{hm} \pm 1 \%$, $1 / 4 \mathrm{~W}$	100-5041	2
R20	Resistor, $100 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1023	1
R21 THRU	Resistor, 1 Meg Ohm $\pm 5 \%$, 1/4W	100-1073	3
R23			
R24	Resistor, $1.33 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1331	1
R25 R28	Resistor, $4.99 \mathrm{k} 0 \mathrm{hm} \pm 1 \%, 1 / 4 \mathrm{~W}$ Resistor, $1210 \mathrm{hm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$100-5041$ $100-1231$	1
R29	Resistor, 4.99 k Ohm $\pm 1 \%$, $1 / 4 \mathrm{~W}$	100-5041	1
R31	Resistor, 100 k Ohm $\pm 5 \%$, $1 / 4 \mathrm{~W}$	100-1063	1
R33	Resistor, $1210 \mathrm{hm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1231	1
R34	Resistor, 6.8 k Ohm $\pm 5 \%$, 1/4	100-6843	1
R35	Potentiometer, $5 \mathrm{k} 0 \mathrm{hm} \pm 10 \%$, 1W, 10 Turn	179-5043	1
R36	Resistor, $3300 \mathrm{hm} \pm 5 \%$, $1 / 4 \mathrm{~W}$	100-3333	1
R37	Resistor, 1 Meg Ohm $\pm 5 \%$, $1 / 4 \mathrm{~W}$	100-1073	
R38 R39	Resistor, $20 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$ Resistor, $100 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-2053 $100-1033$	1
R39 R40	Resistor, ${ }^{\text {a }}$ ($100 \mathrm{hmm} \pm 5 \%, 1 / 4 \mathrm{~W}$ Resistor, $20 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	$100-1033$ $100-2053$	1
R41	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	100-5041	1
R42	Resistor, $10 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	1
R43	Resistor, $39 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-8243	1
R44 THRU	Resistor, $1 \mathrm{Meg} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1073	3
R47	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-5041	1
R48	Resistor, 56 k Ohm $\pm 5 \%$, $1 / 4 \mathrm{~W}$	100-5653	1
R49	Resistor, $100 \mathrm{hm} \pm 5 \%$, $1 / 4 \mathrm{~W}$	100-1023	1
R50	Resistor, $47 \mathrm{k} 0 \mathrm{hm} \pm 5 \%$, 1/4W	100-4753	
R51 R52	Resistor, $27 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$ Resistor, $1 \mathrm{Meg} 0 \mathrm{hm}+5 \%, 1 / 4 \mathrm{~W}$	$100-2753$ $100-1073$	1
R52 R53		100-1043	1
R54	Resistor, $100 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1023	1
R55	Resistor, $4.99 \mathrm{k} 0 \mathrm{hm} \pm 1 \%$, $1 / 4 \mathrm{~W}$	100-5041	1
R56	Resistor, 1 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1043	1
R57	Resistor, 10 k Ohm $\pm 5 \%$, 1/4W	100-1053	1
R58	Resistor, $4.99 \mathrm{k} 0 \mathrm{hm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$100-5041$ $100-1553$	1
R59 R60	Resistor, 15 k K Resistor, 47 km k	-100-4753	1

Table 7. SCA Generator Circuit Board Assembly - 917-0044 (Sheet 4 of 6)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R61	Resistor, $22 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-2253	1
R62	Resistor, 10 k Ohm $\pm 5 \%$, $1 / 4 \mathrm{~W}$	100-1053	1
R63	Resistor, $1.2 \mathrm{k} 0 \mathrm{hmm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1243	1
R64	Resistor, 100 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1033	1
R65	Resistor, 10 k Ohm $\pm 5 \%$, $1 / 4 \mathrm{~W}$	100-1053	1
R66	Resistor, 1 Meg Ohm $\pm 5 \%$, 1/4W	100-1073	1
R67	Potentiometer, $1 \mathrm{Meg} 0 \mathrm{hm} \pm 10 \%, 1 / 2 \mathrm{~W}$	178-1074	1
R68,R69	Resistor, $5.1 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-5143	2
R70	Potentiometer, $2 \mathrm{k} 0 \mathrm{hm} \pm 10 \%, 1 / 2 \mathrm{~W}$	177-2044	1
R71	Resistor, $4.7 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-4743	1
R72	Resistor, $1.2 \mathrm{k} 0 \mathrm{hmm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1243	1
R73	Resistor, 10 Ohm $\pm 5 \%$, $1 / 4 \mathrm{~W}$	100-1023	1
R74	Resistor, $10 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	1
R75	Resistor, $287 \mathrm{k} 0 \mathrm{hm} \pm 1 \%$, 1/4W Film	103-2861	1
R76	Resistor, $9.1 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-9143	1
R77	Resistor, $47 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-4753	1
R78	Resistor, $4.7 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-4743	1
R79	Resistor, $5.1 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-5143	1
R80	Potentiometer, 100 Ohm $\pm 10 \%, 1 / 2 \mathrm{~W}$	177-1034	1
R81	Resistor, 10 k Ohm $\pm 5 \%$, 1/4W	100-1053	1
R82	Resistor, $100 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1023	1
R83	Resistor, 100 k Ohm $\pm 5 \%$, 1/4W	100-1063	1
R84	Resistor, $1500 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1533	1
$\begin{aligned} & \text { R85 } \\ & (A \text { THRU H) } \end{aligned}$	Resistor Network, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}, 16-\mathrm{Pin}$ DIP	226-1055	1
R87	Resistor, 100 Ohm $\pm 5 \%$, 1/4W	100-1033	1
R88	Resistor, $27.4 \mathrm{k} 0 \mathrm{hm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-2751	1
R89	Potentiometer, $5 \mathrm{k} \mathrm{Ohm} \pm 10 \%$, 1W, 10 Turn	179-5043	1
R90	Resistor, 470 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-4733	1
R91	Potentiometer, $5 \mathrm{k} 0 \mathrm{hm} \pm 10 \%$, 1W, 10 Turn	179-5043	1
R92	Resistor, 470 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-4733	1
R94	Resistor, $10 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	1
R95	Potentiometer, $1 \mathrm{Meg} \mathrm{Ohm} \pm 10 \%, 1 / 2 \mathrm{~W}$	178-1074	1
R96	Resistor, $10 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	1
R 97	Resistor, $8200 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-8233	1
R100	Resistor, 1 Meg Ohm $\pm 5 \%$, 1/4W	100-1073	1
R101	Resistor, $10 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	
R104	Resistor, $27 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-2753	1
R105	Resistor, 4.7 k Ohm $\pm 5 \%$, 1/4W	100-4743	1
R106	Resistor, $10 \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1023	1
R107	Resistor, 1 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1043	1
R108,R109	Resistor, $10 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	2
$\begin{aligned} & \text { R111 THRU } \\ & \text { R114 } \end{aligned}$	Resistor, 10 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1023	4
R115	Resistor, $5.1 \mathrm{k} 0 \mathrm{hm} \pm 5 \%$, 1/4W	100-5143	1
R116	Resistor, $220 \mathrm{k} 0 \mathrm{hm} \pm 5 \%$, 1/4W	100-2263	1
R117	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	,
R118	Resistor, $100 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1023	1

Table 7. SCA Generator Circuit Board Assembly - 917-0044
(Sheet 5 of 6)

REF. DES.	DESCRIPTION	PART N O.	QTY.
R119	Resistor, 220 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-2263	1
R120	Resistor, 10 k Ohm $\pm 5 \%$, 1/4W	100-1053	1
R121	Resistor, 33 k Ohm $\pm 5 \%$, 1/4W	100-3353	1
R122	Resistor, 10 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1053	1
R123	Resistor, $1.33 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1331	1
R124	Resistor, $13 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1353	1
R125	Resistor, $10 \mathrm{Meg} \mathrm{Ohm} \pm 5 \%$, 1/4W	100-1083	1
R126	Resistor, $100 \mathrm{hm} \pm 5 \%$, 1/4W	100-1023	1
R127	Resistor, $27 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-2753	1
R128	Resistor, 47 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-4753	1
R129	Resistor, 13 k Ohm $\pm 5 \%$, 1/4W	100-1353	1
R130	Resistor, 20 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-2051	1
R131	Resistor, $9.09 \mathrm{k} 0 \mathrm{hm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-9041	1
R132	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1041	1
R133	Resistor, $100 \mathrm{hm} \pm 5 \%$, 1/4W	100-1023	1
R134	Resistor, 47 k Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-4753	1
R135,R136	Resistor, $1 \mathrm{k} 0 \mathrm{hmm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1043	2
R137	Resistor, 620 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-6233	1
R138	Resistor, $27 \mathrm{k} 0 \mathrm{hm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-2753	1
R139	Resistor, 10 k Ohm $\pm 5 \%$, 1/4W	100-1053	1
R140	Resistor, 1 Meg Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	100-1073	1
R141,R148	Potentiometer, $20 \mathrm{k} 0 \mathrm{hm} \pm 10 \%$, $1 / 2 \mathrm{~W}$	177-2054	2
S1	Ganged, 3 Station, Interlocked Push Switch, DPDT, 25W Maximum, 0.5 Ampere @ 50 V ac or dc, Resistive Load or 0.125 Ampere at $110 / 120 \mathrm{~V}$ ac, Resistive Load (OFF/ON/AUTO/REMOTE Switch)	343-1202	1
U1	Integrated Circuit, TLO74CN, Quad P-Channel JFET Input Operational Amplifier, 14-Pin DIP	221-0074	1
U2 THRU U4	Integrated Circuit, 4 N 33 , Optical Isolator, Infared LED-Photo NPN Darlington Transistor Coupled Pair, 1500V Isolation, Response: 30 kHz Maximum, Current: 50 mA Maximum, 6-Pin DIP	229-0033	3
U5	Integrated Circuit, LM317T, Adjustable Positive Voltage Regulator, 1.2 V to $37 \mathrm{~V}, 1.5$ Ampere, T0-220 Case	227-0317	1
U6	Integrated Circuit, LM337T, Adjustable Negative Voltage Regulator, 1.2 V to 37 V , 1.5 Ampere, T0-220 Case	227-0337	1
U7	Integrated Circuit, TL074CN, Quad P-Channel JFET Input Operational Amplifier, 14-Pin DIP	221-0074	1
U8	Integrated Circuit, MC14011, CMOS, Quad 2 Input NAND Gate, 14-Pin DIP	228-4011	1
U9	Integrated Circuit, MC14001, CMOS, Quad 2 Input NOR Gate, 14-Pin DIP	228-4001	1
U10	Integrated Circuit, TL074CN, Quad P-Channel JFET Input Operational Amplifier, 14-Pin DIP	221-0074	1

Table 7. SCA Generator Circuit Board Assembly - 917-0044
(Sheet 6 of 6)

597-0008-5
FC-30 ASSEMBLY DRAWING

