RON NOTT

instruction book

Collins Radio Company

26J-3 Auto-Level Amplifier

BROADCAST EQUIPMENT GUARANTEE

The equipment described herein is sold under the following guarantee:
a. Except as set forth in paragraph b. of this section, Collins agrees with Buyer to repair or replace, without charge, any properly maintained equipment, parts or accessories whichare defective as to design, materials, or workmanship and which are returned in accordance with Collins instructions by Buyer to Collins factory, transportation prepaid, provided:

1. Notice of a claimed defect in the design, materials or workmanship of the equipment manufactured by Collins is given by Buyer to Collins within five (5) years from date of delivery, with exception of rotating machinery such as blowers, motors, and fans whereby notice must be given by Buyer to Collins within two (2) years from date of delivery.
2. Notice of a claimed defect in the design, materials or workmanship of the following described Collins manufactured equipment is given by Buyer to Collins within two (2) years from the date of delivery:

$20 \mathrm{~V}-3$	$26 \mathrm{U}-2$	81 M	$172 \mathrm{G}-2$	$216 \mathrm{C}-2$	$313 \mathrm{~T}-4$	$642 \mathrm{~A}-2$	$820 \mathrm{~F}-1$	$830 \mathrm{D}-1$	$830 \mathrm{~F}-2 \mathrm{~A}$
$26 \mathrm{~J}-1$	$42 \mathrm{E}-7$	$144 \mathrm{~A}-1$	$212 \mathrm{H}-1$	$313 \mathrm{~T}-1$	$356 \mathrm{H}-1$	$786 \mathrm{M}-1$	$\mathrm{~A} 830-2$	$830 \mathrm{E}-1$	$830 \mathrm{H}-1 \mathrm{~A}$
$26 \mathrm{U}-1$	$42 \mathrm{E}-8$	$172 \mathrm{G}-1$	$212 \mathrm{Z}-1$	$313 \mathrm{~T}-3$	$564 \mathrm{~A}-1$	$820 \mathrm{E}-1$	$830 \mathrm{~B}-1$	$830 \mathrm{~F}-1$	$830 \mathrm{~N}-1 \mathrm{~A}$

b. The above guarantee does not extend to other equipment, accessories, tubes, lamps, fuses, and tape heads manufactured by others which are subject to only adjustment as Collins may obtain from the supplier thereof.
c. Collins further guarantees that any radio transmitter described herein will deliver full radio frequency power output at the antenna lead when connected to a suitable load, but such guarantee shall not be construed as a guarantee of any definite coverage or range of said apparatus.
d. The guarantee of this section is void if:

1. The equipment malfunctions or becomes defective as a result of alterations or repairs by others than Collins or its authorized service center, or
2. The equipment is exposed to environmental conditions more severe than specified by Collins in equipment manuals.
e. NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR INTENDED PURPOSE, SHALL BE APPLICABLE TO ANY EQUTPMENT SOLD HEREUNDER.
f. THE FOREGOING SHALL CONSTITUTE THE BUYER'S SOLE RIGHT AND REMEDY UNDER THE AGREEMENTS IN THESE SECTIONS. IN NO EVENT SHALL COLLINS HAVE ANY LIABILITY FOR CONSEQUENTIAL DAMAGES, OR FOR LOSS, DAMAGE OR EXPENSE DIRECTLY OR INDIRECTLY ARISING FROM THE USE OF THE PRODUCTS, OR ANY INABILITY TO USE THEM EITHER SEPARATELY OR IN COMBINATION WITH OTHER EQUIPMENT OR MATERIAIS, OR FROM ANY OTHER CAUSE.
g. The guarantees of this section and limitations thereon will also accrue to the benefit of any purchaser of Buyer's F.C.C. license, provided:
3. Notice of the sale of the F.C.C. license is given by Buyer to Collins in writing within thirty (30) days after the consummation of said sale; and
4. No greater rights are granted to the purchaser of Buyer's F.C.C. license than are granted herein to Buyer.

How to Return Material or Equipment If, for any reason, you should wish to return material or equipment, whether under the guarantee or otherwise, you should notify us, giving full particulars including the details listed below, insofar as applicable. If the item is thought to be defective, such notice must give full information as to nature of defect and identification (including part number if possible) of part considered defective. (With respect to tubes we suggest that your adjustments can be speeded up if you give notice of defect directly to the tube manufacturer.) Upon receipt of such notice, Collins will promptly advise you respecting the return. Failure to secure our advice prior to the forwarding of the goods or failure to provide full particulars may cause unnecessary delay in the handling of your returned merchandise.

ADDRESS:

INFORMATION NEEDED:

Collins Radio Company
Customer Returned Goods, 412-023
1225 North Alma Road
Richardson, Texas 75080
(B) Date of delivery of equipment
(C) Date placed in service
(D) Number of hours of service
(A) Type number, name and serial number of equipment
(E) Nature of trouble
(F) Cause of trouble if known
(G) Part number (9 or 10 digit number) and name of part thought to be causing trouble
(H) Item or symbol number of same obtained fromparts list or schematic
(I) Collins number (and name) of unit subassemblies involved in trouble
(J) Remarks

How to Order Replacement Paris When ordering replacement parts, youshould direct your order as indicated below and furnish the following information insofar as applicable. To enable us to give you better replacement service, please be sure to give us complete information.

ADDRESS:
Collins Radio Company
Service Parts, 412-024
1225 North Alma Road
Richardson, Texas 75080

IN FORMATION NEEDED:

(A) Quantity required
(B) Collins part number (9 or 10 digit number) and description
(C) Item or symbol number obtained from parts list or schematic
(D) Collins type number, name and serial number of principal equipment
(E) Unit subassembly number (where applicable)
以

instruction book

26J-3 Auto-Level Amplifier

table of contents

Page
Section 1 General Description 1-1
1.1 Purpose of Instruction Book 1-1
1.2 Purpose of Equipment 1-1
1.3 Physical Description 1-1
1.4 Functional Description 1-1
1.5 Technical Characteristics 1-2
Section 2 Installation and Adjustment 2-1
2.1 Unpacking and Inspecting the Equipment 2-1
2.2 Installation 2-1
2.2.1 Mounting 2-1
2.2.2 Connections 2-1
2.3 Adjustment Procedures 2-1
2.3.1 Adjustment Procedures for Monaural Operation 2-1
2.3.2 Adjustment Procedures for Stereo Operation 2-1
Section 3 Operation 3-1/3-2
3. 1 Panel Controls and Indicators 3-1/3-2
3.2 Operating Procedures 3-1/3-2
Section 4 Principles of Operation 4-1
4.1 General 4-1
4.2 Amplifier Principles of Operation 4-1
4.2.1 Input Circuits 4-1
4.2.2 Output Amplifier 4-1
4.2.3 Level Control Circuits 4-1
4.2.4 Power Supply 4-2
Section 5 Maintenance 5-1
5.1 General 5-1
5.2 Preventive Maintenance 5-1
5.3 Spare Parts 5-1
5.4 Recommended Test Equipment 5-1
5.5 Trouble Analysis 5-1
5.5.1 Preliminary Adjustments 5-1
5.5.2 Troubleshooting Procedure 5-3
5.6 Repair of Planar Process Boards With Plated Thru Holes 5-3
5.7 Adjustment Procedures 5-3
5.7.1 Initial Adjustments 5-3
5.7.2 Initial Set-Up 5-3
Page
5.7.3 Distortion Alignment 5-4
5.7.4 Meter Alignment 5-4
5.7.5 Nominal Gain Adjustment 5-4
Section 6 Parts List 6-1
6.1 General 6-1
6.2 List of Equipment 6-1
Section 7 Illustrations $7-1 / 7-2$
list of illustrations
Figure Page
1-1 26J-3 Auto-Level Amplifier 1-0
1-2 26J-3 Functional Block Diagram 1-3/1-4
1-3 Compression Characteristic Curve 1-5/1-6
2-1 Rear Panel Connections 2-2
2-2 Connection for Stereo Operation 2-3/2-4
3-1 Panel Controls and Indicators 3-1/3-2
5-1 Test Equipment Setups 5-2
6-1 26J-3 Auto-Level Amplifier 6-2
6-2 Printed Circuit Board 6-5
6-3 Power Supply Assembly 6-11
7-1 Schematic Diagram 7-3/7-4

list of tables

TablePage2-1 Connections 2-2
3-1 Controls and Indicators 3-1,'3-2
5-1 Recommended Test Equipment 5-1
5-2 Troubleshooting Procedure 5-2

140\% (G10 PG

Figure 1-1. 26J-3 Auto-Level Amplifier.

1.1 PURPOSE OF INSTRUCTION BOOK

This instruction book contains information for the installation, adjustment, operation, and maintenance of the 26J-3 Auto Level-Amplifier. Refer to figure 1-1.

1.2 PURPOSE OF EQUIPMENT

The auto-level amplifier provides a high degree of automatic gain control for broadcast program material. Use of the $26 \mathrm{~J}-3$ results in a higher average modulation level while reducing the chance of transmitter overmodulation.

1.3 PHYSICAL DESCRIPTION

The 26J-3 is housed in a metal case $5-1 / 4$ inches high, 19 inches wide, $15-3 / 4$ inches deep and weighs approximately 15 pounds. A removable front panel covers all operator controls that are mounted on the assembly containing the printed circuit card and power supply. The signal inputs and outputs are located on the rear panel.

1.4 FUNCTIONAL DESCRIPTION

Refer to figure 1-2 for the following discussion. INPUT LEVEL attenuator A1R10 controls the program level to gain control amplifier A1 and the signal presence circuits (SPC). With GAIN CONTROL switch A1S1 in AUTO position, operational amplifier A2 amplifies part of the input signal. A2 also isolates the input circuits from the detector/delay circuits. The detector/delay circuits derive a dc voltage dependent on the audio input amplitude. This dc level is delayed to prevent the Schmitt trigger from changing states because short duration signal losses, such as pauses in speech. The Schmitt trigger out-ofphase outputs, fixed normal gain enable, and autogain enable control the states of gain control switches, Q12 and Q13, in the automatic gain control (agc) circuits.

Under normal conditions, input below threshold, fixed-normal-gain enable turns fixed gain switch Q12 on. Fixed-normal-gain enable, through CR23, disables the agc voltage from the signal detector circuits. Fixed gain adjust R50 sets the agc voltage under these conditions. The signal detector circuits derive an amplitude and time dependent dc voltage from the audio input. Gain control switches Q12 and Q13 determine the amplitude and duration of this agc voltage. During normal programming, switch Q13 is on and Q12 is off. As the input program level changes, the voltage from the signal detector circuit also changes. Agc amplifier Q14, Q15, and Q17 amplifies this voltage, drives the front panel meter, A1M1, and supplies gate bias for Q1.

Mos fet* Q1 operates as a voltage controlled shunt resistance that controls the negative feedback for operational amplifier A1. When weak signals, such as soft music passages are sensed, the agc circuits increase the gain of A 1 to maintain its average output level. If a loud passage should occur and return to normal, the agc circuits will immediately decrease the gain of A1, when the amplitude increase is sensed, and slowly return the gain to normal as the input decreases. This permits gain corrections that are not discernable to the average listener.

With GAIN CONTROL switch A1S1 in DISABLE position, A1 functions as an input amplifier with no gain control. Buffer amplifiers Q2 and Q3 provide gain and isolation. OUTPUT LEVEL potentiometer A1R11 develops the signal from Q3. Output amplifier transistors Q4 through Q9 provide gain and impedance matching. Transformer T2 may be tapped for 600 - or 150 -ohm impedance matching.

Solid-state switch Q18 and Q19 provides the agc voltage necessary for paralleling two 26J-3's for stereo operation.

[^0]
1.5 TECHNICAL CHARACTERISTICS

Input Level:

15 dbm maximum (with level control maximum cw)
10 dbm (normal operating level)
Input Impedance:
600 ohms $\pm 20 \%$ balanced
Compression Range:
30 db minimum (figure $1-3$)
Compression Ratio:
15:1 minimum
Attack Time:
5 ms .
Release Time:
7 to 11 ms

Threshold Level:

- 20 to -25 db with input level control maximum cw

Frequency Response:
$\pm 1 \mathrm{db}, 50$ to $15,000 \mathrm{~Hz}$
Distortion:
1% maximum with output up to +20 dbm and compression 0 to 30 db

Noise Level:

-50 dbm under average $15-\mathrm{db}$ compression
Output Level:
20 dbm maximum (reference $0 \mathrm{dbm}=1 \mathrm{mw}$ in 600 ohms)

Output Impedance:
600 ohms $\pm 20 \%$ balanced or unbalanced 150 ohms $\pm 20 \%$ unbalanced

Ambient Temperature Range: $+15^{\circ}$ to $+40^{\circ} \mathrm{C}$

Ambient Humidity Range:
0 to 95% relative humidity
Altitude:
Up to 10,000 feet
Shock and Vibration Condition:
Normal handling and transportation
Power Source:
117 vac $\pm 10 \%, 50 / 60 \mathrm{~Hz}$, single -phase, 30 watts maximum

Type of Service: Continuous

Fuse:
The $26 \mathrm{~J}-3$ is equipped with a $1 / 2$ ampere Slo-Blo post-mounted fuse

Figure 1-2. 26J-3 Functional Block Diagram.
-

Figure 1-3. Compression Characteristic Curve.

installation and adjustment

2.1 UNPACKING AND INSPECTING THE EQUIPMENT

Remove all packing material carefully and lift the unit from the package. Check the equipment against the packing slips. Visually inspect the unit for damaged or missing components. Check for proper operation of controls. Any claims for damage should be filed promptly with the transportation agency. If such claims are to be filed, all packing material must be retained.

2.2 INSTALLATION

2.2.1 Mounting

Position the amplifier in a standard 19-inch rack or cabinet and secure.

2.2.2 Connections

Prior to connecting amplifier primary power and external inputs and outputs, set POWER switch to OFF.

Note

Use shielded cable for all input and output lines to reduce the possibility of hum pickups.

2.2.2.1 Audio Input and Output Connections

Connect the audio input and output connections to the terminal block on rear panel of the amplifier (figure 2-1) as listed in table 2-1. For 600 -ohm balanced input use terminals 1 and 3. Terminal 2 is a common for use with 600 -ohm balanced line. For 600 -ohm balanced output, strap terminal 5 to terminal 6 and take output from terminals 4 and 7. For 150 -ohm balanced output, strap terminals 4 and 6, also strap terminals 5 and 7, and take output from terminals 4 and 7. Terminal 8 is a ground provided for use with unbalanced lines.

2.2.2.2 Connection for Stereo Operation

The 26J-3 amplifiers may be connected in parallel for stereo operation (figure 2-2). When connected in this manner, the channel with the highest amplitude controls the gain of both amplifiers, thus providing the required dynamic separation.

2.3 ADJUSTMENT PROCEDURES

The following procedures outline the adjustments required for stereo and monaural operation.

2.3.1 Adjustment Procedures for Monaural Operation

a. Adjust INPUT LEVEL and OUTPUT LEVEL controls fully cow.
b. Set POWER switch to ON.
c. With normal program material fed into the $26 \mathrm{~J}-3$, adjust INPUT LEVEL for approximately $15-\mathrm{db}$ compression as indicated by the green marker.
d. Adjust OUTPUT LEVEL for the required line amplitude.
2.3.2 Adjustment Procedures for Stereo Operation

a. Connect equipment as shown in figure 2-2 with the exception of AGC A.
b. With both INPUT LEVEL controls maximum cw , apply a $1-\mathrm{kHz}$ signal to amplifier/A. Increase the input level until the compression meter reaches 15 db .
c. Adjust the amplifier output level for the desired line level.
d. Connect another Signal source to amplifier B and adjust the frequents to approximately 1 kHz .
e. Increase the input Revel to amplifier B to 0 dbm and observe output A. If output A decreases in lofel, its associated compresssion meter mil also read completely down scale. To correct this, adjust R70 of amplifier B (figure 7-1) cow until amplifier A output returns to its previous setting. If amplifier A remains unaffected with ea $0-\mathrm{dbm}$

13502609 P
Figure 2-1. Rear Panel Connections.

Table 2-1. Connections.

SIGNAL NOMENC LATURE	TERMINAL NUMBER
Audio input, 600-ohm balanced	1 and 3
Audio input, common for 600 ohms	2
Audio output, (paragraph 2.2.2.1)	$4,5,6,7$
Ground	8
Connections for stereo operation (figure 2-2)	9,10
Aux audio input	11

input to amplifier B, readjust $R 70$ of amplifier $\backslash B$ slowly $c w$ until the output of amplifier A \just begins to decrease.
f. Remove A AGC B and connect AGC A.
g. Increase the input level to amplifier B until the compression meter reads 15 db .
h. Adjust amplifier B output for the desired line level.
i. Increase the input level to amplifier A to 0 dbm and opserve output B. If output B decreases in level, its associated compression meter will also read eompletely down scale, To correct this, adjust ${ }^{2 R 70}$ of amplifief A cew until amplifier B output returns to its previous setting. If amplifier Bremains
unaffected with a 0 -dbm input to amplifier A, adjust R70 of amplifier A slowly cow until amplifier A output returns to its previous setting.
j. Connect AGC B
k. Decrease both INPUT LEVEL controls and increase both input signal levels to their normal values.

1. Increase both INPVT LEVEL controls slowly until both read approximately $15-\mathrm{db}$ compression and the outputs of both amplifiers are equal The OUTPUT LEVEL controls should not be used to equalize the output levels. This will cause a permanent change in channel levels.
2.3.2 Adjustment Procedures for Stereo Operation
a. Connect equipment as shown in Figure 2-2 with the exception of AGC A.
b. With both INPUT LEVEL controls maximum cw , apply a $1-\mathrm{kHz}$ signal to amplifier A at Odbm.
c. Adjust the amplifier output level for the desired line level.
d. Connect another signal source to amplifier B and adjust the frequency to approximately 1 kHz .
e. Increase the input level to amplifier B to Odbm and observe output A. If output A decreases in level, adjust R70 of amplifier B (Figure 7-1) ccw until amplifier A output returns to its previous setting. If amplifier A remains unaffected with a 0 -dbm input to amplifier B, readjust $R 70$ of amplifier B slowly $c w ~ u n t i l$ the output of amplifier A just begins to decrease.
f. Remove AGC B, connect AGC A, and remove the input to A.
g. Adjust the input level to amplifier B to Odbm.
h. Adjust amplifier B output for the desired line level.
i. Increase the input level to amplifier A to Odbm and observe output B. If output B decreases in level, adjust R70 of amplifier A ccw until amplifier B output returns to its previous setting. If amplifier B remains unaffected with a 0 - dbm input to amplifier A, adjust R 70 of amplifier A slowly cw until amplifier $\not \subset$ output Just begins to decrease.
j. Connect AGC B.
k. Decrease both INPUT LEVEL controls and increase both input signal levels to their normal values.
2. Increase the INPUT LEVEL control of amplifier A until it reads approximately $15-\mathrm{db}$ compression. Monitor the output of amplifier A and increase the input level control of amplifier B until the output of amplifier A just begins to decrease. The OUTPUT LEVEL controls should not be used to equalize the output levels. This will cause a permanent change in channel levels.

Figure 2-2. Connection for Stereo Operation.

section

3.1 PANEL CONTROLS AND INDICATORS

This section locates, illustrates, and describes the function of each front panel control (figure 3-1 and table 3-1).

3.2 OPERATING PROCEDURES

Under normal conditions the 26J-3 should not require any adjustment. If the input or output conditions/requirements change, refer to paragraph 2.3 for adjustment procedures.

Figure 3-1. Panel Controls and Indicators.

Table 3-1. Controls and Indicators.

NAME	PANEL MARKING	FUNCTION
Power switch Compression on/off Input level control POWER ON/OFF GAIN CONTROL AUTO/ DISABLE	Turns amplifier on and off. Removes gain control and allows the 26J-3 to function as a straight audio amplifier.	
Panel meter	INPUT LEVEL	Controls the amount of audio to the gain control circuits. Controls the audio output of the $26 J-3$.
Indicates the compression level		
of the input signal.		

principles of operation

4.1 GENERAL

The 26.J-3 is an automatic level-controlling amplifier for use in audio applications where a high degree of gain control is desired. Two units may be paralled for stereo operation. The 26J-3 controls the program level with two time controls: one control responds to level changes of several seconds duration, and the other responds only to short duration (several hundred milliseconds) changes.

4.2 AMPLIFIER PRINCIPLES OF OPERATION

The following paragraphs are keyed to the schematic diagram (figure 7-1).

4.2.1 Inpul Circuils

INPUT LEVEL attenuator controls the audio level across the primary winding of impedancematching transformer T3. The secondary of T3 couples the input to the gain controlling amplifier A1. With GAIN CONTROL switch A1S1 in the DISABLE position, amplifier A1 functions as an input amplifier with no gain control. Transistors Q2 and Q3 buffer the output of A1 and the signal is developed across OUTPUT LEVEL potentiometer A1R11.

4.2.2 Output Amplifier

The output amplifier (Q4 through Q9) functions the same regardless of the position of GAIN CONTROL switch A1S1. Transistors Q4 and Q5 amplify the signal tapped off A1R11. Transistors Q6 through Q9 form a complementary emitterfollower output stage that is loaded into a transformer with dual 150 -ohm secondaries. The output may be connected as a 150 -ohm or 600 ohm source with a maximum power output of 20 dbm .

A.2.3 Level Control Circuils

With GAIN CONTROL switch A1S1 in the AUTO position part of the input signal is tapped off the secondary center tap of T3 and amplifier by A2.

Diode CR16 places the output of A2 on a -12 volt pedestal and CR17 detects the positive peaks. The parallel combination of Rff and C20 develops the detected signal. This Rc time constant provides a small delay to prevent the Schmitt trigger (Q10, Q11) from changing states during brief signal losses, such as pauses in speech. Under no-signal conditions (input below threshold) Q10 is off and Q11 is on. Diode CR23 disables the entire detector network for signal levels below threshold. The two out-of-phase Schmitt trigger outputs control the states of fet switches Q12 and Q13. Under normal conditions, Q10 being off keeps Q12 on, placing R48 in the discharge circuit of C21. When the Schmitt trigger changes states, Q12 turns off and Q13 turns on, placing R54 in the discharge path of C21.

Under normal signal level conditions, Q13 is on and Q12 is off. The parallel combination of R54 and C21 establish the controlling time constant for the agc level. The parallel combination of R48 and C21 establish the agc time constant for signal levels below threshold. The time constant of C21 and R48 is a great deal longer than the combination of C21 and R51 even though the reverse is true of their Rc products, because the voltage across R48, when it is active, is always less than the voltage across R54 when Q13 is on. Variable resistor R50 determines the agc voltage that establishes the compression level of 15 db when the signal level is below threshold.

With switch A1S1 in the AUTO position, the signal is ac coupled to detector diodes CR20 and CR22. Under normal conditions, diode CR21 is reverse biased because of the bias established by R60, R63, R61, and R64. The signal detected by CR20 determines the dc voltage stored at the gate of Q15 by C21 and R54. Normal audio program material amplitude changes are within the rate and dynamic range of the time constant established by C21 and R54. A quiet passage 8 to 10 db below normal level will allow the detected voltage stored across C22 and R54 to decay enough to forward bias CR21. The voltage stored at the gate of Q15 will decrease rapidly because
of the rapid discharging of C21. This increases the gain of A1 until the signal level at CR20 and CR22 once again reverse biases CR21.

Q15, a jfet* used for high-input impedance, buffers the dc output from the signal detector circuits. Q14 provides level shifting while Q17 an emitter follower provides impedance matching. The dc output from Q17 is the agc voltage used for level control. When a gain correction (reduction) is necessary the agc voltage increases in the positive direction. This positive going dc voltage tends to reverse bias mos fet Q1 increasing the shunt resistance to ground. This
increase of resistance allows more negative feedback to terminal 2 of A1, which results in reduced gain. The dc voltage from Q17 also drives the front panel meter which indicates the relative level of compression.

4.2.4 Power Supply

The 26J-3 contains a built in 117-vac power supply. The power supply is a conventional dual full-wave, Rc filtered supply. Zener diodes provide voltage regulation. CR5 regulates the +20 vdc supply while CR6 and CR7 regulate the positive and negative 12 vdc supplies.

[^1]
5.1 GENERAL

The following paragraphs contain maintenance procedures for the 26J-3 Auto-Level Amplifier. Maintenance personnel should become familiar with the principles of operation before attempting to service the 26J-3.

5.2 PREVENTIVE MAINTENANCE

Many electronic equipment malfunctions are caused by accumulated dirt or corrosion. Inspect the equipment at regular intervals, depending upon environmental conditions. Remove the $26 \mathrm{~J}-3$ from its enclosure and use a soft brush and lowpressure air hose or vacuum cleaner to remove dirt and lint. The low-pressure air supplied should be dry and oil-free. Inspect all metal parts for rust, corrosion, and general deterioration. Check wiring and components for signs of overheating, and the power connector and terminal strip on the rear of the unit for broken or loose pins and terminals. Check all operating controls for smoothness of operation. In addition, check all connections and tighten any nuts, bolts, or screws that are loose.

5.3 SPARE PARTS

Spare parts may be ordered from the following address:

Collins Radio Company
Service Parts, 412-024
1225 North Alma Road
Richardson, Texas 75080

5.4 RECOMMENDED TEST EQUIPMENT

The test equipment recommended for the trouble analysis and adjustment procedures of the $26 \mathrm{~J}-3$ is listed in table $5-1$. Test equipment having characteristics equivalent to those listed may be used.

5.5 TROUBLE ANALYSIS

Before starting troubleshooting, be sure that the amplifier is actually defective. Check the input
and output connections and operation of controls. A little time spent here could save a lot of trouble.

Trouble analysis procedures for the $26 \mathrm{~J}-3$ consist of isolating the trouble to a stage, and then making resistance and/or voltage measurements until the trouble source is found. Test points are assigned in various locations to aid the technician in this trouble isolation.

Refer to table 5-2 for the troubleshooting procedure. The voltages given are typical and do not represent absolute values. Different amplifiers may contain voltages that vary slightly from the values given with no loss in performance.

5.5.1 Preliminary Adjustments

Perform the following steps to prepare the amplifier for troubleshooting:
a. Connect the amplifier and test equipment as shown in figure 5-1.
b. Adjust the audio oscillator for a $1-\mathrm{kHz}$, -10 dbm output.
c. Position amplifier controls as shown below: 1. POWER ON/OFF ON 2. INPUT LEVEL 3. OUTPUT LEVEL Fully cw 4. GAIN CONTROL DISABLE

Table 5-1. Recommended Test Equipment.

EQUIPMENT	MANUFACTURER AND TYPE
Wide range oscillator	HP-200CD
Attenuator set	HP-350B
Distortion analyzer	HP-331A
Ac vtvm	HP-400I
Vtvm	HP-410B

Table 5-2. Troubleshooting Procedure.
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { STEP } & \text { TEST EQUIPMENT USED } & \text { LOCATION OF TEST } & \text { INDICATION } & \text { NOTES } \\
\hline 1 & \text { HP-400L } & \begin{array}{l}\text { TB1-4 and TB1-7 } \\
\text { (ground) }\end{array} & +20 \mathrm{dbm} & \begin{array}{c}\text { If this indication is correct, } \\
\text { continue to step 10. If } \\
\text { incorrect, continue to }\end{array}
$$

step 2.\end{array}\right]\)| |
| :--- |
| 2 |

Figure 5-1. Test Equipment Setups.

5.5.2 Troubleshooting Procedure

Using the schematic diagram (figure $1 / 1$ and parts location guide (figure 6-3) perform the measurements listed in table 5-2. Once the trouble is located to a stage, use the HP-410B as an ohmmeter to locate the defective component. After a repair is made, check the amplifier in operation before attempting any recalibration. In most cases replacement of a defective component will not necessitate recalibration.

5.6 REPAIR OF PLANAR PROCESS BOARDS With plated thru holes

Caution

Exercise extreme care during component replacement to avoid damage to the circuit board. Heat applied for more than 5 seconds may cause the plated thru holes to become loose or broken and severely damage the board. Do not attempt to repair a damaged board. Return it to the factory for repair.
a. Replace components with accessible leads (resistors, capacitors, etc.) in accordance with the following procedure.

1. Cut the component lead beyond the bend (nearest the board). Make sure the cut lead is straight.
2. Remove all burrs by rounding or squeezing the lead with the long-nosed pliers.
3. Apply heat (5 seconds, maximum) to the lead on the backside of the board and remove the molten solder with a solder sipper (Collins part number 024-0676-010).
4. Allow the board to cool completely between heatings and repeat step 3 . as necessary.
5. Carefully break the lead loose from the hole, and gently remove the cold lead. If necessary, slightly heat the lead from the component side of the board while carefully removing the lead from the bottom.
6. Carefully insert the lead of the replacement component into the hole. Be sure the lead is straight.
7. Apply heat to the lead on the backside of the board (5 seconds, maximum) and allow fresh solder to flow into the hole. Cut off any excess lead. Do not bend the lead.
b. Replace components without accessible leads (transistors, relays, board-mounted potentiometers, etc.) in accordance with the following procedure.
8. Apply heat (5 seconds, maximum) to the component lead on the backside of the board and remove the molten solder with a solder sipper.
9. Allow the board to cool completely between heatings and repeat step 1. as necessary.
10. Use long-nosed pliers to gently straighten the lead, if it is bent. The lead must be as straight as possible.
11. If possible, cut the lead and remove all burrs by rounding or squeezing the lead with the long-nosed pliers.
12. Repeat steps 1. and 2. until the lead can be carefully broken loose from the hole.
13. Slowly and very gently remove the component from the board.
14. Carefully insert the replacement component. Be sure the lead is straight.
15. Apply heat to the lead on the backside of the board (5 seconds, maximum) and allow fresh solder to flow into the hole. Cut off any excess lead. Do not bend the lead.

5.7 ADJUSTMENT PROCEDURES

Note

The following procedure tells how to change or adjust R50, R65, R68, and R69. These adjustments have been made at the factory to optimize the performance of the amplifier. Under no circumstances should the following adjustments be made without first determining that the trouble is positively caused by one of these adjustments. Indiscriminate adjustment or adjustment without the test equipment recommended will result in seriousloss of equipment performance.

5.7.1 Initial Adjustments

Place the panel controls in the following positions:
a. INPUT LEVEL - fully ccw
b. OUTPUT LEVEL - fully ccw
c. GAIN CONTROL - AUTO

5.7.2 Initial Setup

a. Connect the test equipment as shown in figure 5-1. Set POWER ON/OFF to the ON position.
b. Adjust the oscillator frequency to $1-\mathrm{kHz}$.
c. With the attenuator set at 0 db , adjust the oscillator output to +15 dbm as indicated on the ac vtvm.
d. Adjust the INPUT LEVEL control R10 to the maximum cw position.

5.7.3 Distortion Alignment

Adjust the OUTPUT LEVEL control, R11, of the $26 \mathrm{~J}-3$ for 18 to 20 dbm at the output. Adjust R69 for minimum distortion. Readjust the attenuator to 30 db .

5.7.4 Meter Alignment

a. Adjust R68 so that the meter on the $26 \mathrm{~J}-3$ is approximately 10% full scale.

Note

If, prior to this adjustment, the meter is reading completely down scale adjust R68 cw for 10% of full scale. If the meter is reading full scale R 68 must be rotated ccw for 10% of full scale.
b. Adjust R65 fully cw and readjust R 68 for 0 db reading on the meter.
c. Adjust R65 fully ccw. Adjust the attenuator to 0 db . Adjust R 65 cw for full scale reading of 30 db .

5.7.5 Nominal Gain Adjustment

Adjust the attenuator to 15 db . Adjust OUTPUT LEVEL control R11 to give an output level of +10 dbm . Place GAIN CONTROL switch S1 in the DISABLE position. Adjust R50 so that the output level returns to +10 dbm .

Note

Due to the extremely long time constants involved in this setting, the adjustment time may be minimized by temporarily placing a 1 kilohm resistor in parallel with R48.

Return the GAIN CONTROL switch to the AUTO position after adjustment is completed.

6.1 GENERAL

This section contains a list of all replaceable electrical, electronic, and critical mechanical parts for the 26J-3 Auto-Level Amplifier.

The manufacturers' codes appearing in the Mfr Code column of the parts list are listed in numerical order at the end of the parts list. The code list provides the manufacturer's name and address as shown in the Federal Supply

Code for Manufacturers' Handbook H4-1. Manu-
facturers not listed in Handbook $\mathrm{H}^{-1} 1$ are assigned a 5-letter code and appear first in the code list.

6.2 LIST OF EQUIPMENT

age26J-3 Auto-Level Amplifier6-2
Printed Circuit Board 6-5
Power Supply Assembly 6-11

DEALLA
8502593 Bx

Figure 6-1. 26J-3 Auto-Level Amplifier (Sheet 1 of 2).

FRONTMVIEW

REAR VIEW

Figure 6-1. 26J-3 Auto-Level Amplifier (Sheet 2 of 2).

B502 595 Bx
(
Figure 6-2. Printed Circuit Board (Sheet 1 of 3).

B502 595 Bx

Figure 6-2. Printed Circuit Board (Sheet 2 of 3).

Figure 6-2. Printed Circuit Board (Sheet 3 of 3).

SYMBOL	DESCRIPTION	MANUFACTURER'S PART NUMBER	$\begin{aligned} & \text { MFR } \\ & \text { CODE } \end{aligned}$	COLLINS PART NUMBER
E14				
THROUGH	SAME AS E13			
E17				
E18	HEAT SINK	TR101E1	14953	352-9977-000
E19	SAME AS E18			
Q1	TRANSISTOR	2N4353	07688	352-0751-010
Q2	TRANSISTOR	2N3567	07688	352-0629-010
Q3	SAME AS Q2			
Q4	TRANSISTOR	2N3638	07688	352-0636-010
Q5	SAME AS Q2			
Q6	SAME AS Q2			
Q7	TRANSISTOR	2N2218	07688	352-0433-000
Q8	SAME AS Q4			
Q9	TRANSISTOR	2N904	07688	352-0610-030
Q10	SAME AS Q2			
Q11	SAME AS Q2			
Q12	TRANSISTOR	2N4416	07688	352-0756-010
Q13	SAME AS Q12			
Q14	TRANSISTOR	2N4121	07688	352-0743-010
Q15	SAME AS Q12			
Q16	SAME AS Q4			
Q17	SAME AS Q2			
Q18	SAME AS Q12			
Q19	SAME AS Q2			
R1				
THROUGH	NOT USED			
R15				
R16	RESISTOR, FXD, COMPOSITION 2200 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF222K	81349	745-0761-000
R17	RESISTOR, FXD, COMPOSITION 150K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF154K	81349	745-0827-000
R18	RESISTOR, FXD, COMPOSITION 1 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF102K	81349	745-0749-000
R19	RESISTOR, FXD, COMPOSITION 1500 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF152K	81349	745-0755-000
R20	RESISTOR, FXD, COMPOSITION 47 K OHMS, 10% TOL, $1 / 4 \mathrm{WATT}$	RC07GF473K	81349	745-0809-000
R21	RESISTOR, FXD, COMPOSITION 4700 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF472K	81349	745-0773-000
R22	RESISTOR, FXD, COMPOSITION 470 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF471K	81349	745-0737-000
R23	SAME AS R21			
R24	RESISTOR, FXD, COMPOSITION 390 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF394K	81349	745-0842-000
R25	RESISTOR, FXD, COMPOSITION 10 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF103K	81349	745-0785-000
R26	RESISTOR, FXD, COMPOSITION 3300 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF332K	81349	745-0767-000
R27	RESISTOR, FXD, COMPOSITION 56 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF563K	81349	745-0812-000
R28	RESISTOR, FXD, COMPOSITION 39 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF393K	81349	745-0806-000
R29	RESISTOR, FXD, COMPOSITION 12 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF123K	81349	745-0788-000
R30	SAME AS R18			
R21	SAME AS R16			
R32	RESISTOR, FXD, COMPOSITION 10 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF100K	81349	745-0677-000
R33	SAME AS R29			
R34	SAME AS R32			
R36	RESISTOR, FXD, COMPOSTTION 15 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF150K	81349	745-0683-000
R37	SAME AS R25			
R38	SAME AS R19			
R39	SAME AS R18			
R40	RESISTOR, FXD, COMPOSITION 220 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF224K	81349	745-0833-000
R41	RESISTOR, FXD, COMPOSITION 18K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF183K	81349	745-0794-000

SYMBOL	DESCRIPTION	MANUFACTURER'S PART NUMBER	$\begin{aligned} & \text { MFR } \\ & \text { CODE } \end{aligned}$	COLLINS PART NUMBER
R42	RESISTOR, FXD, COMPOSITION 5600 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF562K	81349	745-0776-000
R43	SAME AS R25			
R44	RESISTOR, FXD, COMPOSITION 100 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF104K	81349	745-0821-000
R45	SAME AS R25			
R46	SAME AS R18			
R47	SAME AS R44			
R48	RESISTOR, FXD, COMPOSITION 1 MEGOHM, 10% TOL, I/4 WATT	RC07GF105K	81349	745-0857-000
R49	RESISTOR, FXD, COMPOSITION 1800 OHMS, 10% TOL $1 / 4$ WATT	RC07GF182K	81349	745-0758-000
R50	RESISTOR, VARIABLE 2 K OHMS, 10% TOL, $3 / 4$ WATT	77PR2K	73138	382-0012-080
R51	SAME AS R44			
R52	SAME AS R26			
R53	RESISTOR, FXD, COMPOSITION 390 OHMS, 10% TOL, $1 / 2$ WATT	RC20GF391K	81349	745-1335-000
R54	RESISTOR, FXD, COMPOSITION 5.6 MEGOHMS, 10% TOL, $1 / 4$ WATt	RC07GF565K	81349	745-0884-000
R55	SAME AS R42			
R56	SAME AS R21			
R57	RESISTOR, FXD, COMPOSITION 3900 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF992K	81349	745-0770-000
R58	SAME AS R18			
R59	RESISTOR, FXD, COMPOSITION 680K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF684K	81349	745-0851-000
R60	RESISTOR, FXD, COMPOSITION 82 K OHMS, 10% TOL, $1 / 4$ WATT	RC07GF823J	81349	745-0817-000
R61	RESISTOR, FXD COMPOSITION 100 K OHMS, 5% TOL, $1 / 4$ WATT	RC07GF104J	81349	745-0820-000
R62	SAME AS R19			
R63	RESISTOR, FXD, COMPOSITION 22 K OHMS, 5% TOL, $1 / 4$ WATT	RC07GF223J	81349	745-0796-000
R64	RESISTOR, FKD, COMPOSITION 12 K OHMS, 5% TOL, $1 / 4$ WATT	RC07GF113J	81349	745-0787-000
R65	RESISTOR, VARIABLE 5 K OHMS, 10% TOL, $3 / 4$ WATT	77PR5K	73138	382-0012-090
R66	SAME AS R18			
R67	SAME AS R19			
R68	RESISTOR, VARIABLE 1K OHMS, 10% TOL, $3 / 4$ WATT	77PR1K	73138	382-0012-070
R69	RESISTOR, VARIABLE 10K OHMS, 10% TOL, $3 / 4$ WATT	77PR10K	73138	382-0012-100
R70	RESISTOR, VARIABLE 100K OHMS, 20% TOL, $3 / 4$ WATT	77PR100K	73138	382-0012-140
R71	SAME AS R44			
R72	RESISTOR, FXD, COMPOSITION 100 OHMS, 10% TOL, $1 / 4$ WATT	RC07GF101K	81349	745-0713-000
R73	SAME AS R72			
R74	SAME AS R18			
R75 R76	SAME AS R18			
R77	SAME AS R25 SAME AS R25			
R78	SAME AS R21			
T3	TRANSFORMER, AUDIO FREQUENCY 500 VRMS, 60 HZ	124A31	11700	667-0187-020

*

Figure 6-3. Power Supply Assembly.

 section 7 illustrations

Figure 7-1. Schematic Diagram.

COLLINS RADIO COMPANY

CEDAR RAPIDS, IOWA - DALLAS DIVISION

PRODUCTION TEST SPECIFICATION
FOR .
AUYD-LEVEL AifPL IFIER 26J-3 CPN 758-5776-001

$$
26 \mathrm{~J}-3
$$

TEST EQUIPMENT REQUIRED

The following equipments or their equivalents are required to perform the specified tests:

1. Wide Range Oscillator, Hewlett Packard Model 200CD
2. Distortion Analyzer - Hewlett Packard Model 33lA
3. Oscilloscope - Hewlett Packard Model 130B
4. Atcenuator Set - Hewlett Packard Model 350B
5. DTVIVM - HÉQLett Packara 412A

4.0 TEST CONDITIONS

Unless otherwise specified, all tests shall be performed under the following conditions.
4.1 Primary Power:
$-117 . \operatorname{VAC} \pm 10 \%, 50-60 \mathrm{~Hz}$, single phase.
.4.2 Ambient Temperature:
Normal factory ambient.
4.3 Ambient Humidity:

Normal factory ambient.
4.4 Ambient Atmospheric Pressure:

Normal factory ambient.
4.5 Shielding and Isolation Requirements:

None.
4.6 Operational Duty Cycle:

Continuous,
4.7. Warm-Up Period:

Five (5) minutes.

NO. 509-5910-001

5.0
 PRELIMINARY TESTS

5.1 Visual Inspection:

The unit shall be visually inspected to insurs that there are no damaged components or shorted or "cold" solder connections. Ascertain that all required markings are present.

5.2 Fusing:

Determire that FI ($\frac{1}{2}$ amp) is in place.
5.3 Meter Protection:

Adjust R70 for approximate mid-position.
Adjust R65 maximum CCW.
Adjust R68 for approximate mid-position.
Adjust R10 (Input Level) and R11 (Out Leve1) so the maximum CCW position.
Place S1 (Gain Control) in the AUTO position.
From the table in para 7.7 select a 4.7 megohn resistor and temporarily connect it to the bcard in the R54 position.
INITLAL ADJUSTMENTS
6.1

Initial Set-Up:
Connect the equipment as shown in Figure 1. (Note: S1 of Figure 1 will remain in the ATTENUATE position except for the tests prescribed in paragraphs 7.7 and 7.8). Adjust the oscillator frequency to 1 kHz . With the attenuator set at 0 db adjust the oscillator output to +15 dbm on the VTVM of the HP331A. Now adjust the INPUT LEVEL control, R10, of the 26J-3 to the maximum CW position.
6.2 Distortion Alignment:

Adjust the OUTPL Γ LEVEL control, R11, of the 26J-3 for 18-20 dbm at the output. Adjust R69 for minimum distortion. Readjust the attenuator to 30 db .

NU. 569-5910-001

6.3
 Meter Alignment:

Step 1: Adjust R68 so that the meter on the $26 \mathrm{~J}-3$ is approximately 10% fuill scale. (NOTE: If prior to this adjustment the meter is reading completely down-scale adjust R68 CW for 10% full scale. If the meter is reading full scale R68 must be rotated CCW for 10% full scale.)

Step 2: Adjust R 65 fully CW and readjust R 68 for 0 db reading on the meter.

Step 3: Adjust R65 fully CCW. Adjust the attenuator to 0 db . Adsust R 65 CW for full scale reading of 30 db .
6.4 Nominal Gain Adjustment:

Adjust the attenuator to 15 db . Adjust the OUTPUT LEVEL control, Rll, to give an output level of +10 dbm . Place the GAIN CONTROL switch, S1, in the DISABLE position. Adjust R50 so that the output level returns to +10 dbm . (NOTE: Due to the extremely long time constants invulved in this setting, the adjustment time may be minimized by temporarily placing a 1 K ohm resistor in parallel with R48.) Return the GAIN CONTROL switch to the AUTO position.

Preliminary Tests:
Preliminary tests as outlined in para. 5.
7.2 Initial Adjustments:

Initial adjustments as outlined in para. 6.
7.3 Freque cy Response and Distortion (fixed gain):

Adjust tise attenuator to 15 db . Adjust the oscillator to 1 kHz and a level of +15 dbm. NOTE: (In paragraphs 7.3 through 7.6 the oscilla tor output shall be a constant +15 dbm). Place the GAIN CONTROL sritch in the DTSABLE position. Adjust the OUTPUT LEVEL control for +10 dbm output. Keeping the Audio Oscillator output constant, measure t'ie output level and the amount of harmonic distortion at the following frequencies; $50 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, $5 \mathrm{kHz}, 10 \mathrm{kHz}, 15 \mathrm{kHz}$. Return the GAIN CONTROL switch to the AUTO position.

NO. 569-59E0-001
REVISION

NO. 569-5910-001
REVISION
7.7. Release Time:

Adjust the output of the Audio Oscillator output to a level of +10 dbm at 10 kHz . Adjust the attenuator to 20 db . Adjust the OUTPUT LEVEL control of the $26 \mathrm{~J}-3$ for $+i 0 \mathrm{dbm}$ on the output. With the oscilloscpe connected as in Figure 1 and with $S l$ in the BYPASS position, adjust the vertical senitivity of the oscilloscope so that the waveform occupies 10 cm on the screen. Adjust the oscilloscope trigger mode to EXT. NEG. Adjust the horizontal sweep rate to 1 second/cm. Switch Gl to the ATTENUATE position and measure the time required for the waveform to reach $7 \mathrm{~cm} p-\mathrm{p}$. If the elapsed time is less than 7 seconds, replace R 54 with a larger value resistor. If the elapsed time is greater than 11 seconds, replace $R 54$ with a smaller value resistor. Permanentiy install the proper resistor and record the release time.

Value

$2.2 \mathrm{M} \Omega$	$745-0869-000$
$2.7 \mathrm{M} \Omega$	$745-0872-000$
$3.3 \mathrm{M} \Omega$	$745-0875-000$
$3.9 \mathrm{M} \Omega$	$745-0878-000$
$4.7 \mathrm{M} \Omega$	$745-0881-000$
$5.6 \mathrm{M} \Omega$	$745-0884-000$
$6.8 \mathrm{M} \Omega$	$745-0887-000$
$8.2 \mathrm{M} \Omega$	$745-0890-000$
$10.0 \mathrm{M} \Omega$	$745-0893-000$

Attack Time:

Adjust the attenuator to 10 db and tie vertical sensitivity of the osilloscope so that the waveform occupies 8 cm . in the center of the screen. Adjust the horizontal sweep rate to $1 \mathrm{~ms} / \mathrm{cm}$. Adjust the trigger mode to INT. POS. so that the sweep will trigger when SI of Figure 1 is switched to the BYPASS position. Place SI in the ATTENUATE position and allow the output of the $26 \mathrm{~J}-315 \mathrm{sec}$. to stabilize. Throw Sl to the BYPASS position and measure the time from the beginning of the sweep until the output returns to $10 \mathrm{~cm} \mathrm{p}-\mathrm{p}$.

AGC Output Test:
Adjust the oscillator cutput to +15 dbm at 1 kHz . Adjust the attenuator to 15 db . Adjust R70 maximum CW. Measure the DC. voltage with the VOM between TB1-8 \& TB1-9. Rotate R70 to the maximum CCF position. Measure the DC voltage again. Return R7S to approximately mid-position. Temporarily record the voltage and observe that the voltage goes to zero when the oscillator is disconnected.
7.10 Threshold Level:

Connect the DCVIVM across TB1-8 and TB1-9. Adjust the oscillator output to +15 dbm at 1 kHz and set the attenuator ts 49 db . Decrease the attenuator in 1 db steps until the voltmeter suddenly reads more negative than -3 VDC.

NO. 569-5910-001

8.2 .4	Fominal Gain Adjustment:	Test Results	Test Ifimits	
	. S1 in DISARLE position		Check	.
	K50 adjusted for +10 dbm output		Heck	
8.3	i'reque:cr Kiesponse and Distortio	(Fixed Cai		

Frequency	Test Results		Test ${ }^{\text {Timits }}$	
	Output	Distortion	Output	Distortion
.	Level	.	Level	

8.4 Dynamic Distortion:

NO. 569-5910-001
8.5 Compression Ratio:

Attenuator	Test Results	Test Limits
30 db		$+10 \mathrm{dbm}($ Ref)
0 db		+10 to +12 dbm

8.6 Noise Leve1: \quad Test Results Test Limits

Output witk atten. at $15 \mathrm{db} \ldots$. () Stable at +10 dbm
Output with osc. disconnected _ \quad dbm -50 dbm max.
8.7 Release..Ifme:

Elapsed time for 7 cm recovery \qquad sec 7 to 11 sec
8.8 Attack Time:

Elapsed time forlOcm recovery \qquad ma 5 ms max. .
(c)
8.9 AGC Output Test:

Condition

(A) R70 max. CW \qquad VDC -0.75 to -3.50 VDC
(B) RTO max. CCW \qquad VDC -4.75 to -7.25 VDC

A-B
Osc. Disconnected
8.10

Threshold Level:
Condition:
Attenuator Setting
Voltmeter reads at least -3 VDC $\quad . \quad \mathrm{db} \quad 35$ to 40 db
\qquad VDC $\quad 3.0 \mathrm{~V}$ Min.

[^0]: *Metal oxide semiconductor field effect transistor

[^1]: *Junction field effect transistor

