हCमunse

732A

FM BROADCAST TRANSMTTTER

INSTRUCTION BOOK

for

732A FM BROADCAST TRANSMIUTER 1000 WATTS

Section 1 - GENERAL DESCRIPTION

1.1. General	$1-1$	1.4.4. Stability	$1-3$
1.2. Mechanical Description	$1-1$	1.4.5. Swing	$1-3$
1.3. Electrical Description	$1-2$	1.4.6. Frequency Response	$1-3$
1.3.1. Power Supply	$1-2$	1.4.7. Pre-Emphasis	$1-3$
1.3.2. Audio System	$1-2$	1.4.8. Distortion	$1-3$
1.3.3. Modulation System	$1-3$	1.4.9. Audio Input Level	$1-3$
1.3.4. Exciter	$1-3$	1.4.10. Audio Input Impedence	$1-4$
1.3.5. Final R-F Circuits	$1-3$	1.4.11. Noise Level	$1-4$
1.4. Reference Data	$1-3$	1.4.12. Line Voltage	$1-4$
1.4.1. Frequency Range	$1-3$	1.4.	
1.4.2. Power Output	$1-3$	1.4.13. Pouer Demand	$1-4$
1.4.3. Load	$1-3$	1.4.14. Vacuum Tube Complement	$1-4$

Section 2 - INSTALLATION AND INITIAL ADJUSTMENTS

2.1. Preliminary	2-2	2.6.3. Filament and Plate Push	
2.I.I. Uncrating	2-2	Buttons	-
2.2. Installation Procedure	2-2	2.7 Outline of Adjustments	2-9
2.2.1. Location of Transmitter	2-2	2.8. Energizing the Equipment	2-9
2.2.2. Setting Up Transmitter	2-2	2.9. Power Circuit Check	2-9
2.3. Remote Control Wires	2-5	2.10. Insertion of Tubes	2-11
2.3.1. Strnrt Button	2-5	2.11. Filament Circuit Adjustment	2-11
2.3.2. Stop Button	2-5	2.11.1. General	2-11
2.3.3. Filament Pilot Light	2-5	2.12. R-F Tuning Adjustments	2-13
2.3.4. Plate Pilot Light	2-5	2.12.1. Exciter Tuning	2-13
2.4. Antenna Termination	2-6	2.12.2. Int. Amplifier Tuning	2-15
2.5. Assembly of Transmitter Dust		2.12.3. Power Amplifier Tuning	2-17
Covers	2-6	2.12.4. Neutralization	2-18
2.6. Controls	2-6	2,12.5. Final Amplifier Loading	2-18
2.6.1. General	2-6	2.13. Final R-F and Audio Adjust-	
2,6.2. Function of Controls	2-7	ments	2-19

Section 3 - OPERATION

3.1. General	3-1	3.3. Routine Operation	3-2
3.2. Initial Operation	3-1	3.3.1. Starting Equipment	
3.2.1. Starting Equipment	3-1	3.3.1. Starting Equipment	3-2
3.2.2. Stopping Equipment	3-2	3.3.2. Stopping Equipment	3-2
Section 4 - CIRCUIT THEORY			
4.1. A-C Power Circuits	4-1		4-2
	4.3.1. Exciter and Phasitron		
4.2. Control Circuit Opera.tio	4-1	Circuits	4-2

Section 5-OPERATORS MAINTENANCE
5.1. General
5.2. Routine Checks
5.3. Voltage and Current Checks

5-1 5.4. Circuit Breckers
5-2
5-1 5.5. Tube Replecement
5-1 5.6. Room Temperature

5-2
5-2

Section 6 - PREVENTIVE MAINTENANCE

Section 8 - PARTS LIST AND MISCELLANEOUS DRANINGS
Figure Title Page
1-1 732A Front View 1-1
1-2 732A Rear View 1-1
1-3 GL-2H21 Phasitron Tube 1-2
2-1 732A Transmitter Installation 2-1
2-2 Typical Installation 2-2.
2-3 Terminal Board Assembly (Rear View) 2-3
2-4 Exciter and Audio Chassis (Bottom View) 2-4
2-5 RF Output Assembly 2-4
2-6 Remote Control Circuits 2-5
2-7 Upper Front Door $2-6$
2-8 Control Panel 2-8
2-9 Power Circuit Check 2-10
2-10 Exciter Chnssis (Front View) 2-11
2-11 Exciter Metering Circuit 2-12
2-12 Power Multiplier and Finel Amplifier Metering Circuit 2-14
2-13 Tuning Motors 2-16
2-14 Tuning Motors Schematic 2-16
2-15 Multipliers and Fincl Amplifier 2-17
2-16 RF Output Assembly 2-18
4-1 Power Control Circuit 4-1
4-2 Power Control Circuit (Filament ON Button Pressed) 4-1
4-3 Power Control Circuit (Plate ON Button Pressed) 4-1
4-4 Phasitron Functional Diagram 4-3
4-5 Vertical Section of the Tube and Modulator Coil 4-4
4-6 Perspective View of the Electron Disc in the Phasitron Tube 4-4
4-7 Developed View of Grid Structure and Natural Plane 4-5
4-8 Position of the Electron Disk for Maximum Cur- rent Collected at Anode No. 1 4-5
4-9 Block Diagram Showing the Use of the Phositron Tube in the 732A 4-7
4-10 Audio Amplifier Schematic 4-8
4-ll Final Amplifier Schematic 4-9
5-1 Blowers and Motor 5-1
5-2 Control Panel (Rear View) 5-1
5-3 Relay Panel 5-2
6-1 Blower and Motor Assembly 6-2
6-2 Tuning Motors 6-2
6-3 732A (Rear View) Interlock and High Voltage Shorting Switch Location 6-3
6-4 732A (Front View) Interlock and High Voltage Shorting Switch Loce.tion 6-3
7-1 Remove Phasitron Tube 7-1
7-2 Low Voltage Power Supply (Rear View) 7-2
7-3 Low Voltage Power Supply (Front Vicw) 7-2

Figure	Title	Page
7-4	Upper Door Parts Arrangement	7-3
7-5	732A Front Upper Section Parts Arrangement	7-3
7-6	Power Amplifier Grid Circuit Parts Arrangement	7-4
7-7	RF Output Parts Arrangement	7-5
7-8	Exciter Chassis (Rear View)	7-6
7-9	Exciter Chassis Parts Arrangement	$7-7$
7-10	732A (Rear View) Parts Arrangement	7-8
7-11	Phasitron Tube Data	7-9
7-12	Decibels Versus Frequency Cycles Per Second, With Pre-Emphasis	7-10
7-13	Decibels Versus Frequency Cycles Per Second, Without Pre-Emphasis	7-11
7-14	\% of Distortion Versus Frequency Cycles Per Second	7-12
8-1	Connector Cable Assembly	
8-2	Front Door Cabling Schematic	
8-3	Cabinet Cabling Schematic	
8-4	Vertical Chassis Cabling Layout (Rear View)	
8-5	Main Schematic	
8-6	RF Junction Box	
8-7	Phasing Network Transformer	
8-8	Line Tank Assembly	

7-4 Upper Door Parts Arrangement 7-3
7-5 732A Front Upper Section Parts Arrangement 7-3
7-6 Power Amplifier Grid Circuit Parts Arrangement 7-4
7-7 RF Output Parts Arrangement 7-6
7-8 Exciter Chassis (Rear View) 7-7
-10
7-8
7-11 Phasitron Tube Data 7-9
7-12 Decibels Versus Frequency Cycles Per Second, With Pre-Emphasis

7-10
7-13 Decibels Versus Frequency Cycles Per Second,
Without Pre-Emphasis
7-14 \% of Distortion Versus Frequency Cycles Per $\begin{aligned} & \text { Second }\end{aligned}$
8-1 Connector Cable Assembly
8-2 Front Door Cabling Schematic
8-3 Cabinet Cabling Schematic
8-4 Vertical Chassis Cabling Layout (Rear View)
8-5 Main Schematic
8-6 RF Junction Box
8-7 Phasing Network Transformer
8-8 Line Tank Assembly

Page

GUARANTEE

This equipment is guaranteed against defects in material, workmanship or manufacture, for a period of one year from the date of delivery. Our obligation under this guarantee is limited to repairing or replacing any item which shall prove, by our examination, to be thus defective, provided the item is returned to the factory for inspection with all transportation charges paid. Before returning any item believed to be of defective materjail, workmanship or manufacture, a detailed report must be sulmitted to the company giving exact information as to the nature of the defect, The information shall include, in as wuch detail as possible, all subject naterial listed under instructions for replacement of parts。 Upon receipt of the report by the company, detailed instructions as to how the equipment is to be returned will be issued. Do not return any material until instructed to do so by the company.

COLLJNS RADIO COMPANY

REPLACEMHTT OF PARTS

In case a replacement under the guarantee is desired, a full report must be submitted to the coiapany, This report shall cover all details of the failure and must include the following informetion:
(A) Date of aielivery of equipment.
(B) Date placed in service.
(C) Number of hours in service.
(D) Part number of item,
(E) Item number (obtain from Parts List or Schenatic Diagram).
(F) Type number of unit from which port is renoved.
(G) Serial number of unit.
(H) Serial number of the complete equipment
(I) Nature of failure,
(J) Cause of failure.
(K) Remarks.

When requisitioning replacement parts, the following information must be furnished:
(A) Quentity required.
(B) Part number of itcm,
(C) Item number (obtain from Parts List or Schematic Diagraun).
(D) Type number of unit.
(E) Scrial number of unit,
(F) Serial number of equipment.

NOTE: Blank Service Report form will be found in the appendix of this instruction book.

SECTION 1

Figure l-1 732A Front View

1.1. GENEFAL.

The Collins 732A Transmitter has been designed for FM broadcast service. The new Phasitron modulator circuit is employed, eliminating as many as ten tubes compared with former circuits; and re-~ sulting in far greater simplicity and operating reliability. Direct crystal control of the carrier frequency prom vides high stability without complexity of apparatus. A frequency multiplication of only 486 produces the carrier frequency, No frequency conversion or referencemechantsms are necessary. This new circuit, with fewer stages, fewer components, and greater operation sim.. plicity assures uimost dependability with a minimum of maintenance。
tubes, the 866A rectifier tubes and the 829 B multiplier tubes. The lower door allows access to the exciter and the control panel. With the lower door open, the bottom of the exciter can be viewed by loosening the two wing fasteners at the top corners of the exciter and while supporting the unit, allowing it to move forward until the bottom of the exciter is exposed. The whole vertical chassis will come forward when the two wing fasteners on the control panelare released. These features incorporated in the 732A FM transmitter, make it an outstanding unit for simplicity in servicing and maintenance. All doors, except the lower front door, are provided with high voltage shorting switches and primary interlocking switches for the protection of maintenance personnel.

The ventilating blowers arelocated just beneath the tuned elements of the final amplifier. This allows the circulating air to be forced thru the hollow tuned element and to be blown on the $4 \times 500 \mathrm{~F}$ final amplifier tubes. The air is drawn in through spun glass filters located in the rear doors of the cabinet.

Three tuning motors are provided for tuning the power amplifier and adjusting the r-f lines. One motor tunes the

- poweramplifier by positioning the shorting bar on the parallel ines in the plate circuit. The second motor varies the degree of coupling between the amplifier output circuit and the r-f line (or transmission line). The third motor operates a variable capacitor in the antenna circuit which provides a means of resonating the r-f line.

1.3. ELECTRICAL DESCRTPTION.

7.3.1. Power Supply. - Three power supplies are employed in this transmitter to provide the necessary direct current volitages for application to the plates and screens of the transmitting tubes. The low voltage supply uses a $5 k 4 G Y$ rec-
tifier tube and two VR-105 regulator tubes to supply volitge to the exciter and the audio tubes and a selenium rectifier to supply direct current for the filament of the 2 H 21 Phasitron tube.

The medium voltage supply uses two 866A rectifier tubes and supplies voltage to both 829B multiplier tubes and to the screens of the $4 \times 500 \mathrm{~F}$ power amplifier tubes.

The high voltage power supply employs a

Figure l-3 GL-2H21 Phasitron Tube

3 ϕ power transformer with a Y secondary and the primary delta connected. Three 866A rectifier tubes are used. The output voltage is applied to the plates of the $4 \times 500 \mathrm{~F}$ power amplifier tubes.
1.3.2. Audio System. - The audio system utilizes a pushpull amplifier stage employing 6SJ7triode connected tubes. The input is applied to the 6SJ7 grids through a plug-in attenuator or pre-emphasis network and an input transformer. The output of the audio system is connected to
the Phasitronfield coil througha transformer.
1.3.3. Modulation System. - The GL--2H21 is used as a phase-modulator in the 732A FM transmitter. As a modulator tube the GL-2H2l makes possible the introduction of comparatively wide phase excursions at audio frequency rates in a crystal controlled radio frequency carrier. The modulating circuit audic response is such that the tube has a wide-swing fre-quency-modulated sutput.

The outstanding features which this tube contributes to FM transmission are:

1. Direct crystal control using a single crystal.
2. Modulation independent of frequency control.
3. Low distortion.
4. Low noise level.
5. Simplicity of circuits and circuit alignment.
1.3.4n Exciter. - The FM oxciter includes a GSJ7 tuned plate crystal oscillator. A low temperature cuefficient quartz crystal provides a high degrea of frequency stability. A 6SJ7 tube is employed as abuffer following the crystal oscillator to drive the tuned circuit which supplies three-phase r-f to the Phasitron tube. The audio voltage is applied to the Phasitron tube through the field coil. The r-f stage following the Phasitron tube is a 6SJ7 tube which functions as a doubler. Following the doubler are a 6SJ7 operating as a tripler, a 6SJ7 oparating as a socond tripm ler, a 6SJ7 amplifier and a 6V6 tripler.
1.3.5. Final R-F Circuits. The final r-f circuits consists of two 829B tubes
operating as triplers supplying ruf voltage to the grids of the 4X500F power amplifier tubes. The outputcircuit of the lX500F's is a parallel line systeme a Faraday shield is mounted between the parallel lines and the antenna coupling link.
1.4, REFERENCE DATA.
1.4.1. Frequency Range。 \rightarrow The 732A FM Transmitter is designed to operate in the 88 to 108 mc FM broadcast band. It is possible to operate this equipment on any frequency within this band.
1.4.2. Power Output. - 250 watts to 1000 watts continuous duty operation.
1.4.3. Load. - 40 to 80 ohm coaxfal transmission line, power factor 0,866 to 1.0 (other arrangements are available).
1.4.4. Stability. - Belter than ± 250 cps.
1.4.5, Swing. - 0 to $133 \%^{\circ}$ modulation.
1.4.6. Frequency Response. - Flat within 1 db from 50 cps to $15,000 \mathrm{eps}$.
1.4.7. Pre-Emphasis. - Standard 75 microsecond preweriphasis network to be supplied for mounting in transmitter, or in any convenient location where transmitter is to be fed by compression amplifier. When mounted externally, the network and its associated socket require a mounting space $3^{\prime \prime}$ by $2^{\prime \prime}$ by $5^{\prime \prime}$ high.
1.4.8. Distortion. - At 100% medulation, 50 cps to $15,000 \mathrm{cps}$, less than 1.5% 。 Measurements in accordance with FCC requirements.
1.4.9. Audio Input Level. $-+12 \mathrm{dbm}, \dot{\mathrm{I}}^{2}$ dbm , for 100% modulation at 400 cps .
1.4.10 Audio Input Impedance. - 600 ohms and 150 ohms*, balanced to ground.
1.4.11. Noise Level. - Frequency Modulation: Better than 65 db below 100% modulation. Amplitude Modulation; Better than 50 db below a level corresponding to 100% amplitude modulation.
1.4.12. Line Voltage. - 208/230 volts three phase at 60 cycle normal, 50 cgm cles on special order. Voltage limits, 190 and 250 volts.
1.4.13. Power Demand. - $3.0 \mathrm{KVA}, 90 \%$ P.F., at maximum rated output.
1.4.14. Vacuum Tube Complement. - The vacuum tubes employed in the 732A equip-
ment are listed below:

QTY.	TUBE TYPE	FUNCTION
1	6SJ7	Crystal Oscillator
1	6SJ7	Buffer
1	GL-2H21	Phase Modulator
1	6SJ7	Doubler
2	6SJ7	Triplers
1	6SJ7	Amplifier
1	6V6	Tripler
2	6SJ7	Audio Amplifiers
2	829B	Triplers
2	4X500F	Power Amplifiers
1	5R4-GY	L.V. Rectifier
2	$0 \mathrm{C} 3 / \mathrm{VR105}$	Voltage Regulator
2	866A	Int. V. Rectifiers
3	866A	H.V. Rectifiers

* A special pre-emphasis network is required if 150 ohm input is desired.

Figure 2-1 732A Transmitter Installation

Figure 2-2 Typical Installation

2.1. PRELTMINARY.

2:1.1. Uncrating. .. Caution should be exercised when uncrating to avoid dainagiug the equipment. A nail puller should be used to remove the nails instead of a hamer or bar. All units should be inspested carefully. Inspect cables and wiring and make sure that ail cable con.zections are tight. Inspect each unjt Zor loose screws and bolts, Checik alj. controls such as switshes, dials, etc., for proper operation as far as can be determined without the application of poser. All claims for damage sinould be filed promptly with the transportation company.

2.2. INSTALIATION PROCEDURE.

2,2.I。Location of Transmitter. - A typical station layout is shown in figare 2.-2. This may be used as a pattern for your station, In any arrangement, the transmittas should be placed so that there is a minimum ciearance of 30 inches at the rear of the transmitter to permit free circulation of air, A minimum cieararse of 43 inches is required in front of the transmitter to allow the aours to be openeci.
2.2.2, Setting Up Triensaitte3:n - The transmitter is shipped with the heavier iron core units as well as some of the
more fragile components removed from the cabinet. It is recommended that no attempt be made to place these components in position until the cabinet has been permanently placed on the transmitting room floor.

A comparatively simple arrangement to accommodate the wiring at the base of the transmitter maybe constructed by assembling four two-by-fours to provide a base for the transmitter. After the two-byfours are in place they may be painted for appearance. This kind of a base provides a mop board and prevents scuffing of the paint on the bottom of the equipment.

There are several possible ways to make connections to the transmitter. Wie suggest one method that is applicable to the equipment. A trench of a tee shape can be used. A $l^{\prime \prime}$ conduit is required for the power feed line; a $1 / 2^{\prime \prime}$ or $1^{\prime \prime}$ conduit is required if it is desired to remote control any of the circuits (the size of the conduit depends upon the
 3 LINE
conduit is required for the audio feed line and a $1 / 2^{\prime \prime}$ conduit for the monitor feed line.

All four conduits will terminate under the transmitter. The conduits must be bonded to the transmitter cabinet in one or two places with copper ribbon. Pull the wires through the conduits. Remove the plate that is located at the bottom of the transmitier. The removal of this plate gives access to the conduits and the wires. The wires can then be "snaked" into the channel and up through the bottom of the transmitter. After the wires have been brought up into the transmitter proper they can be connected to the terminals and connectors, (Refer to figure 2-1.)
(a) Power Connections. - This equipment requires a 230 volt, 60 cycle, three phase line for its operation. It is recommended that number 10 wire or larger be used for this line. Connect the a-c line to terminals 1,2 and 3 on terminal strip E212.

Figure 2-3 Terminal Board Assembly (Rear View)
(b) Audio Linc. (Refer to figure 2-4) A two wire shielded cable of a low capacityvariety is required for the audio line. The terminal strip for this line is lorated on the exciter chassis. To gair accees to the audio ierminal strip, Eill, the exciter chassis must be lowered forward by releasing the wing fasteners in the upper right and left hand corners of the exciter chassis. Viewing the chassis from the bottom, the termiral strip, Elll, will be found at the left rear. The sudio cable is brought through the hold indicated in figure 2-1 and aitached to terminals 1,2 and 3 on E11I. Terminals 1 and 2 are the audio torminals and number 3 terminal is ground, When the connections have been made the exciter canbe returned to its operating position and fasiened.

Figure 2-4 Exciter and Audio Chassis (Bottom View)
(c) Monitor Feed. (Refer to figure 2-5). - The coaxial wall mounting con... rector $J 202$ for the moaiton line will te found on the right side of the r-f
compartment as viewed from the rear of the transmitter. A coaxial connector or plug is supplied for use with the wall connector J202, An RG-8/U coaxial cable is recommended for the monitoring cable although most any type of HF coaxial cable can be used. From the conduit to the coaxial wall connected a coaxial cable approximately 10 feet long will be required. Refer to figure 2-1 for the routing of the cable.

Figure 2-5 RF Output Assembly

DO NOT COUPLE THE MONITORING EQUIPMENT TO THE TRANSMITTER UNTIL ALL R*F TUNING ADJUSTMENTS HEVE BEEN COMPLETED. REFER TO PARAGRAPH 2.13.
(d) Crystal Oven. .. It is usually desiiabie to leave the crystal oven on continuousiy to provide an even temper--
ature and thus assure good frequency stability at all times. When operating the crystal oven continuously; it may te desirable to run it on a 115 volt line rather than the 230 voit line to which the oven transformer is connected as supplied. The transformer (TUG1) that supplies the voltage for the heater oven is equipped with a 115 volt tap. By moving the wire from terminal No. 5, which is the 230 volt tap, to terminal No. 2 on transformer T091 and removing the jumpers between terminals 5 and 6 and terminals 3 and 2 on terminal strip E2O1, the oven circuit will be connected for 115 volt operation. The 115 volt external connection should be made to terminals 2 and 5 on Terminal strip E201.

2.3. REMOTE CONTROL WIRES.

It maybe desired to connect remote control wires from the transmitter to another operating position. The following circuits may be remotely controlled:
2.3.1. Start Button, (Refer to figure 2-6). ... The start circuits may bo remotely controlled by making connections to terminals 11 and 9 on terminal strip ElOl. The start switch should be a mo-mentary make type, one normally open circuits Collins Part Number 260035500. When this remote switch is pressed it turns on the complete transmitter. The FILAMENT pilot light will come on immediately and the PLATE pilot light wili come on as soon as the time delay relays have operated. When the PLATE pilot light comes on at the remove position, it does not mean that the transmitter is on the air. Circuit breakers S25P, S266, S273, S231, S274 and S282 on the control panel must be in the ON positions. If the circuit breaker S282, PA PLATE, is turned OFF or is in the OFF position when the remote button is pressed, the PLATE pilot light on the transmitter proper will noi light or will go off.
2.3.2, Stop Button. - The stop circuits may be remotely controiled by making connections to terninals 6 and 7 on terminal board E20I. The stop ewitch should be a push button type, one normally closed circuit, Collins Part Number 250035200 . When the stop button is pressed it turrs off the complete transmitter, including the filaments.
2.3.3. Filament Pilot Light. - The remote fil.cment pilot light should be connected to terminals 8 and 4 on terminal strip E201.

2,3.4. Plate PiIot Light. - The remote piate pilot light should be connected

Figure 2-6 Remote Control Circuits

Figure 2-7 Upper Front Door
to terminals 4 and 12 on terminal strip E201.
2.4. ANTENNA TERMINATION. (Refer to fig.• ures 2-1 and 2-5.)

Connect the 732A Transmitter to the anterna by means of a consentric transmission line. The transmission line may be brought out the side or top of the cabinet. The junction box is designed to fit standard RNA 1-5/8' coaxial line. If an antenna is used that has no doe wath to ground, some means of leakage or drain to ground should be provided.

2.5. ASSEMBLY OF TRANSMITTERDUST COVERS.

After all necessary wiring has been installed, the dust covers may be fastened
in place, The bolts which hold the retaining strip on the front edge of the caivinet should be loosened so that the fiont edge of the dust cover assembly can be slid under the strip, Holes in the cabinet walls are provided so that the screws which hold the side covers in place may be tightered from the inside of cabinet.

2.6. CONTROLS.

2,6.1. General. - Tha 732A Transmitter is operatedand adjusted by controls lo-. cated on the control panel. The control. panel is located directly behind the small access door in the center of the cabinet. Four push buttons and four pilot lights are located above this control panel, on the front of the upper door.

The control panel includes the following controls:

```
INT, SELECTOR - switch (S242)
LINE FIL. - switch (S256)
EXCITER - meter (M241)
TUNING - switch (S291)
TUNING SELECTOR -- switch (S292)
FILAMENT - circuit breaker (S251)
EXCITER - circuit breaker (S266)
INT, PLATE - circuit breaker (S273)
SELECTOR - switch (S24l)
PA PLATE - circuit breaker (S281)
INT. TUNE - circuit breaker (S274)
PA TUNE - circuit breaker (S282)
```

2.6.2. Function of Controls.
(a) FIJAMENT. - Circuitbreaker (S251). This circuit breaker feeds power to the control circuits, filament constant voltage transformers, blower and crystal heater oven.
(b) EXCITER. - Circuit breaker (S266). This circuit breaker applies voltage to the exciter plate transformer T094.
(c) INT. PLATE - Circuit breaker (S273). This circuit breaker applies primary voltage to the power transformer T171 which supplies plate and screen voltages for the 829 B multipliers and screen voltage for the $4 \times 500 \mathrm{~F}$ final amplifier tubes.
(d) PA PLATE. - Circuit breaker (S281). This circuit breaker applies primary power to the power amplifier plate transformer T281.
(e) INT. TUNE. - Circuitbreaker (S274) This circuit connects a resistance in series with the primary of power transformer T271. This resistor reduces the plate and screen voltage applied to the $829 \mathrm{~B}^{\prime} \mathrm{s}$ and screen voltage to the $\langle\times 500 \mathrm{Fis}$, protecting these tubes while tuning ad.justments are being made.
(f) PA TUNE. - Circuitbreaker (S282). This circuit breaker lowers plate voltage for tune-up and in cases where minor overioads occur, will open, dropping transmitter to tune up position. After the trouble has been cleared, 5282 may be reset without interruption in broadcast service.
(g) SELECTOR (S241). - This selector switch, together with the EXCITER meter M241, makes it possible to meter all important points in the exciter unit. The steps providedinclude filament voltage, exciter plate voltage, audio cathode current, oscillator cathode current, modulator cathode current, modulator input, lst tripler grid current, 2nd tripler grid current, amplifier grid current and 3rd tripler grid current.
(h) EXCITER Meter (M24I). - This meter gives readings for the stages listed under SELECTOR switch Sl4l above. The meter readings are in arbitrary units giving relative indication.
(i) INT. SELECTOR (S242). - This selector switch, together with meter M242 on the top door, meters the grid of the first 829B, V201, in position one, the plate current of V 201 in position two, the grid cui'rent of the second 829B, V211, in position three, the plate current of V211 is position four, the grid current of the $4 \times 500 \mathrm{~F}$ amplifier tube V22I in position five and the grid current of the $4 \times 500 \mathrm{~F}$ amplifier tube 2222 in position six.
(j) POWER MULTIPLIERS Controls.-Five controls are located at the top of the control panel:

Control No. 1 is used to tune the grid of the first power multiplier (829B) v201.

Figure 2-8 Control Panel

Cortrol No. 2 is used to tune the plate of the first power miitipǐer (829B) V201.

Control No. 3 is used to tune the gric of the second power muitiplier (829B) V211:

Control No. 4 is used to tune the plate of the second power multiplier (829B) V21I.

Control No. 5 is used to tune the power amplifier (4X500F) grids.
(k) PRI. VOLTAGE Switch (S256), -This switch, together with the primary volt meter M25i meters the incoming a-c line when in the LINE position, and the reg.. ulated voltage applied to the primaries of all filament transformers when in the FTY. position.
(1) TUNING SELECTOR Switch (S292). . This selector switch may be used to select the PLATE TUNING, LINE COUPLING or LINE TUNING motor.
(m) TUNING SVITCH (S291). .. This is a momentary contact type switch with a spring return. After the TUNING SELEC-TOR switch (S292) has been set to the position desired, the TUNING switch (S291) is operated either to the LOWER position or the RAISE position, as desired.
2.6.3. FIIAMENT and PLATE Push Buttons.The four pilot lights and four push but.tons on the top cioor may be used to control and monitor the transmitter. Refer to figure 2-7. The green pilot light on the left side of the panel is across the load side of the FILAMENT circuit breaker (S251) and will light when S251 is in the ON position.

This indicates that the primary voltage is available for the control circuits, The FILAMENT ON button energizes the filaments, blower relay K25s. and the first red lightwhich is across the filament transformer primaries. At the same time, relay K 261 , which is a time delay type relay, is energized。 Relay K261 can be set for any time delay from 0.2 seconds to 3 minutes. Normal setting is 30 seconds for warm up of rectifier cathodes. When the time is up, K261 closes relay K262, which is the exciter plate relay, and turns the exciter on. As soon as the exciter comes on, the second green light, which is across the primary of the exciter plate transformer, comes on, indicating that the excitation is present.

When the PLATE ON button is pressed, it operates the plate control relay K273 instantaneously. Following the operation of relay K273, then relay K274 operafes and turns on the plate voltage for the final amplifier. The second red light comes on.

NOTE

Pressing the PLATE ON button operates all relays in the same sequence as outlined above.

2.7, OUTLINE OF ADJUSTMENTS.

The adjustment procedure is treated in a step-by-step mannerin paragraphs following this brief outline.

1. Power circuit checks.
2. Phasitron filament voltage adjustment.
3. Oscillator adjustments.
4. Buffer grid adjustment to peak Phasitron input.
5. Buffer plate adjustment to peak Phasitron input.
6. Phasitron input and coupling for 3 phase balance.
7. Phasitron output and doubler output for peak grid current of list tripler.

ס. Adjustment of all other transformers for peak grid current of succeeding tubes.
9. 829 B multiplier grid adjustment.
10. 829 B multiplier plate adjustment.
11., $4 \times 500 \mathrm{~F}$ power amplifiergrid adjustment.
12. $4 \times 500 \mathrm{~F}$ power amplifier plate adjustment.
13. Antenna loading adjustments.
2.8. ENERGIZING THE EQUIPMENT.

Before energizing the equipment, a thorough inspection of all connections and terminals should be made. Inspect all door interlocks, making certain that the male member is free, by pressing on the contact block witil the spring is completely compressed and then releasing the pressure. If the contact block does not spring out to its initial position, check the two wires comprising the arm for parallelism, bending the wire arms until they arefree of the stop pin that is located between the two wires: Be-fore applying power to the transmitter input, be certain thatall circuit breakers are in the OFF position. Do not insert the tubes into the transmitter. These precautions having been taken, the circuit to the transmitter may be energized.

2.9. POWER CIRCUIT CHECK.

1. Energize the circuit to the transmitter.
2. Cluse circuit breaker marked FILAMENTS (S251) on the control panel. The meter lights and the first pilot light

Figure 2-9 Power Circuit Check
will come on and the line voltage can be measured on the PRIMARYVOLTAGE meter with the PRI VOLTAGE switch in the ϕ, $\phi 2$ and $\phi 3$ posititons.
3. Press the FILAFENT ON button. The filament control relay (K251) wiil close and will be held in the operated position by the circuit through the holding contacts. The closing of this relay will light the second pilot lamp, start the ventilating blowers and energize the time delay relay (K261) and the regulator tiransformer (T25i). The regulator secondary voltage can be measured on the PRIMARY VOLTAGE meter by placing the PRI VOLTAGE switch in the FIL, position. The remaining relays and control circuits will not operate until all interlocks are closed and the VF--105 voltage regulator tubes are in their sockets.

When the above preliminarytest has been completed, press the FILAMENT OFF button
to turn off the equipment.

2,10. INSERTION OF TUBES.

With the above power checks completed, insert the tubes into their respective sockets. Refer to figures 2-10 and 2-15.

NOTE

One of the two GL-2H2l tubes supplied with the transmitter will be marked as the one for which the transmitter is set up and should be used for the first tune up.
2.11. FILAMENT CIRCUIT ADJUSTMENT.
2.il.1. General. - All filament transformers are supplied through a constant voltage transformer. The following table gives the tube type, function and correct filament voitage.

Figure 2-10 Exciter Chassis (Front View)

Figure 2-11 Exciter Metering Circuit

TUBE TYPE		CORRECT		
VOUNCTION			\quad	VOLTAGE
:---	:---			

CAUTION

OPERATION OF THIS EQUIPMENT INVOLVES THE USE OF HIGH VOLTAGES WHICH ARE DANGEROUS TO LIFE. OPERATING PERSONNEL SHOULD AT ALL TMES OBSERVE ALL SAFETY PRECAUTIONS. DONOT CHANGE TUBES OR MAKE ADJUSTMEITTS INS TDE EQUIPMENT WITH HIGH VOLTAGE SUPPLY ON. DO NOT DEPEND UPON DOOR SWITCHES OR INTERLOCKS FOR PROTECTION, BUT ALWAYS SHUT DOHN POWER ERUIPMENT AND OPEN THE MATN SWITCH IN SUPPLY LINE TO EQUIPMENT.
2.12, R-F TUNING ADTUSTMENTS.

The 732A is tuned up and tested on the assigned frequency before shipping and only those controls which are likely to have been disturbed in packing and unpacking shouldneed adjustment. Although
a complete tuning procedure is outlined below, perform only those operations that are required to return the transmitter controls to the proper positions for operation.

2,12.1, Exciter tuning.

(a) General. - Operate the FILAMENT and EXCITER circuit breakers on the control panel to the ON positions.

Press the FILAMENT ON button and check the filament voltage, line voltage and Phasitron filament voltage. When the time delay relay has operated the exciter is ready for tuning up.

NOTE

Adjust the bias controls of the Phasitrontubes as indicated on the data sheetenclosed with the tube. Other than the Phasitron bias control, no adjustment should be necessary in the exciter, and none should be aitempted at this time unless the meter readingsare more than 20% different from the typical readings given in Section 3.
(b) Crystal Oscillator Tuning. - The crystal oven should have at least a 30 min. warm up period beforefinal adjustments are made.

The exactoperating frequency may be set to the station standard by adjusting capacitor (COO7) which is located directly below the crystal oven and is designated as CRYSTAL TUNING.

* The 2 H 21 Phasitron tube has a rectified filament roltage supply. This rectified filament supply is provided with a potentioneter to adjust the voltage to exactly 6.3. The correct voliage is indicated by a reading of 200 on the EYCITER meter (M241) when the SELECTOR switch (S242) is in the position marked FIL. V.

Figure 2-12 Power Multiplier and Final Amplifier Metering Circuit
(1) Turn SELECTOR switch to OSC. K.
(2) Tune the crystal oscillator tank (Refer to figure $2-10$) capacitor, "P" of ZOIO, for a dip in cathode current. Continue to rotate the capacitorin a counterclockwise direction, which is on the high frequency side of resonance, until a point is reached where the frequency and piate current change very slowly. This is the most suable operating point of the oscillator. Fequency adjustments should be made with $C 007$ and not the plate tuning capacitor.
(3) Turn the SELECTOR switch to the MOD. INPUT position.
(4) Tune the secondary of 2010 (Refer to figure 2-10) for maximum indication on the meter,
(c) Modulator Tuning.
(1) Turn the SELECTOR switch to the IST. TRIP. GRID position.
(2) Adjust the PRI. TUNING control on the phasing network transformer for maximum indication on the meter, Fur.ther adjustment of this circuit are covered under final adjustment and need not be made here.
(d) Multiplier Tuning.
(1) Tune the primaries and secondaries of transformers $Z 030$ and 2040 for maximum indication on the meter.
(2) Thirn the SELECTOR switch to $2 N D$. TRIP. GRID position.
(3) Tune the primary and secondary of transformer 2050 for maximum meter indication.
(4) Turn the SELECTOR switch to AMP. GRID position,
(5) Tune the primary and secondary. of transformer 2060 for maximum meter indication.
(6) Turn the SELECTOR switch to 3RD, TRIP. GRID position.
(7) Tune the primary and secondary of transformer 2070 for maximum meter indication.
(8) Turn the INT. SELECTOR switch to the \#I GRID 25 MA position.
(9) Tune the primary of transformer Z080 for maximum meter indication. This completes the tune up procedure for the EXCITER section.

2,12.2. Intermediate Amplifier Tuning.

(a) General. - Operate the INT. PIATE circuit breaker to the ON position. Press the PLATE ON button. This turns on the plate voltage for the 829 B multipliers.
(1) Set the INT. SELECTOR switch to the \#I GRID position.
(2) Tune the NO I GRID knob for maximum meter reading.
(3) Turn the INT, SELECTOR switch to the \#l PLATE position.
(4) Tune the NO. 1 PLATE knob for minimum plate current.
(5) Turn the INT. SELEGTOR switch to the \#2 GRID position.
(6) Tune the NO, 2 GRID knob for maximum grid current.
(7) Turn the INT. SELECTOR switch to \#2 PLATE position.

Section 2

Figure 2-13 Tuning Motors

Figure 2-14 Tuning Motors Schematic

Figure 2-15 Multipliers and Final Amplifier
(8) Tune the NO. 2 PLATE knob for minimum plate current.
(9) Turn the INT, SELECTOR awitch to the P.A. GRIDS LEFT position.
(10) Tune tha P.A. GRID knob for maximum meter indication.
(11) Turn the INT. SELECTOR switch to the P.A. GRIDS RIGHT position.
(12) Checkmeter indication and touch up tuning if necessary.
(13) Turn the INT. SELECTOR switch to the LEFT K position and check meter reading.
(14) Turn the INT. SELECTOR switch
to the RIGHT K position and check meter reading。

NOTE

If the meter reading for the LEFT K and the RIGHT K are not the same tha 7026 tubes are not balanced. To correct, try different tubes until a pair is found that do balance.

2.12.3. Powir Amplifier Tuningo

(1) Turri on the P.A. PLATE circuit breaker.
(2) Turn the TUNING SELECTOR switch to LINE COUPLING position,
(3) Operate the TUNING knob to LOWER
so as to decouple the link from the plate lines.

CAUTION*

(4) Turn the TUNING SELECTOR switch to PLATE TUNING position.

Figure 2-16 RF Output Assembly
(5) Operate the TUNING knob to resonate the final. Tune for minimum plate current.
2.12.4, Neutralization. - When tuning. for resonance, watch the grid meter of the final amplifier and see if it peaks at the PLATE CURRENT dip. This is an indication that the final is neutralized.

An additional check should be made for neutralization. Turn the EXCITER circuit breaker to the OFF position. This cuts the excitation to the 829 B multipliers and final amplifier tubes. Check the final for self oscillation. If it oscillates, it is not neutralized.

To neutralize the final tubes, the two neutralizing cylinders lccated between the $4 \times 500{ }^{\prime}$'s should be raised or lowered. At 108 mc the cylinders are set very near the top of the post and at 88 mc the tubes are set very near the bottom of the post.

After the approximate setting of the neutralizing cylinders is made, a slight adjustmentwill be necessary for the final neutralizing of the stage. The final neutralizing check should be made with the INT. TUNE and PA TUNE circuit breakers in the ON position.
2.12.5. Final Amplifier Loading. - Before operating the LINE TUNING, partially decouple the antenna link.
(1) Turn the TUNYNG SELECTOR switch to the LINE TUYING position.
(2) Operate TUNING knob until the plate current reaches a maximum.
(3) Turn the TUNING SELECTOR switch to the PLATE TUNING position.
(4) Operate TUNING knob until the plate current dips to minimum.

Continue to operate the PLATE TUNING and LINE TUNING until the plate current at the bottom of the dip is the maximum value obtained by tuning the line. When this condition is reached, the reactance has been tuned out of the coupling circuit and the antenna presents a resistive load.

In the event the variable line tuning capacitor reaches a maximum or minimum setting, it will be necessary to adjust the semi-fixed antenna capacitor, C240, by hand, to a point where the proper tuning will fall into the middle range of the motor driven capacitor. Refer to

* The PLATE TUNING motor is not designed for continuous duty. Maximum ON period should not be more than 2 minutes with an 8 minute OFF period.
figure 2-16. This illustration indicates the capacitor to be adjusted by hand. Once this capacitor has been adjusted and the above conditionhas been met, it will not be necessary to adjust it again unless the frequency of the station is changed.
(5) Turn the TURING SELECTOR switch to the LINE COUPLING position.
(6) Operate the TUNING control until the final amplifier is loaded to the authorized power output. The plate current corresponding to this value is computed from the equation $I P=$ Power output EP x F
where EP is the final piate voltage and F is the efficiency factor supplied with the test data for the transmitter.
(7) Turn the TUNING SELECTOR switch to the PLATE TUNING position.
(8) Check to see if the plate circuit is tuned to resonance.
2.13. FINAL R-F AND AUDIO ADJUSTNENTS.

NOTE

These last adjustments should be made witn the transmitter loaded to full power.

With the transmitter coupled to the station frequency and modulation monitor as describedunder Installation, proceed with the following adjustments.

The slider on the monitor pick up loop (L234) should be moved back for minimum pickup and the P.A.TUNE circuit breaker placed in the $O N$ position when first coupling the transmitter to the monitor to prevent damage to the monitor.

In this condition less than 1 volt RMS r-f voltage should be delivered to the monitor. (If a higher level is present
the monitor input should be checked to be sure that the $x-f$ line that is coupled to the monitor is terminated in a 50 ohm resistive load.)

Full power should be applied to the power amplifier plates and the sliding bar on the pickup loop adjusted for the monitor input level required. With the monitor operating normally, the xtal trimmerCOO7 may be adjusted for the exact assigned frequency.

NOTE

The transmitter and/or the station frequency monitor should be checked against a secondary frequency standard calibrated with WWV to insure operation on the exact frequency.

Before feeding the program to the transmitter, the modulator should be checked. With the Phasitron bias voltages set at the recommended values, (the Phasitron Bias values are suppliedwith each individual tube) modulate the transmitter 100% at 50 cps and check the harmonic distortion at the monitor output with a distortion meter. When making critical adjustments of the 2 H 21 circuits for minimum distortion, a 15 minute warm up period should be allowed. If after the warm up the distortion is greater than indicated for the Phasitron used, the audio balance control R086 and the SEC. TUNING and COUPLING controls on the phasing transformer 2020 should be adjusted for minimum distortion. Also, it may be necessary to "trim up" the biasing con-trols. However, when adjusting the biasing controls, they should not reduce the 1ST. TRIP. GRID current below 100 on the meter scale as this will cause a rise in noise level. The phasing transformer and biasing controls have been supplied with dials so that spare Phas-. itrons can be calibrated in off the air period. And in case of tube failure, a
spare tube can be inserted and the knobs set to the calibrated settings, thus insuring low distortion operation without the necessity of setting the tube up withan oscillator and distortion meter.

The biasing control calibrations suppliedwith each Phasitronare those settings found to give less than 1.5% distortion with 100% modulation at 50 cps and on FM, noise level of more than 65 db below 100% modulation at 400 cps . These settings are not always the same as those recommended by the tube manufacturer and better settings may be found if the station engineer cares to experiment with the tubes during off the air periods.

Since to produce frequency modulation the phase modulation varies inversely with the modulation frequency, if the Phasitron modulator is set up at 100%
modulation at 50 cps the distortion will be much less at higher modulation frequencies and lower modulation levels.

The tuning of the multiplier transformers will have sore affect on the response and distortion at modulating frequencies above 5000 cps.

Careful tuning for peak grid current of each stage will give satasfactory results; however, a fine tuning adjustment can be made to produce flat response and minimum distortion by going over these adjustments with $10,000 \mathrm{cps}$ modulation.

It will be found that tuning of the doubler and lst tripler input transformers affects the high frequency response and the tuning of succeeding stages affects the distortion.
3.1. GENERAL.

Af'ter all adjustments have been made in accordance with the procedure outlined in Section 2, the equipment is ready for operation. This section contains the procedure for actual operation of the equipment. Refer to figures $2-7$ and 2-8 for iocation of panel controls and meters.

3.2. INITIAL OPERATION.

3.2.1. Starting Equipment.
(a) Energize the circuit to the transmitter.
(b) Close all circuit breakers.
(c) Press the FILAMENT ON Button.
(d) After exciter plate comes on press the PLATE ON Button.

The transmitter is now in operation and all meters should be checked tomake sure that each circuit is functioning properly. The following tables list the approximate meter readings for typical operating conditions:

METER READINGS

3.2.2. Stopping Equipment.
(a) Press the FILAMENT OFF Button.
3.3. ROUTINE OPERATION.
3.3.1. Starting Equipment.
(a) Press the PLATE ON Button.
3.3.2. Stopping Equipment.
(a) Press the FILAMENT OFF Button.

Pressing the PLATE ON Button will automatically start the operation sequence that applies filament voltage to the.
tubes, operates the time delay relay, and applies both the low and high voltm ages without any further effort on the part of the operator. Pressing the FILAMENT OFF Buttonwill automatically open the high and low voltage circuits and de-energize the filament transformers. This operation shuts off the equipment completely with the exception of the crystal heater oven. The oven will be left on continuously providing it is connected to a separate source of power as suggested in paragraph 2.2.2.(d).

Final tuning and loading is accomplished by rotating the TUNING SELECTOR switch to the desired circuit to be tuned and operating the TUNING control dial.

SECTION 4

4.1. A-C PONER CIRCUITS.

All power contactors in the equipment are of the 190 to 250 volts a-c type. All power circuits are controlled by opening or closing the transformer primary circuits. The 732A FN Transmitter uses a constant voltage transformer to supply power to the filament transformer primaries. The line voltage may vary from 190 to 250 volts without a noticeable change in filament voltage. The transmitter has been provided with a time delay relay which is energized by the constant voltage transformer. No voltage can be applieduntil the contacts of this relay are closed. The time re.quired for the contacts to close can be adjusted for any interval from , 2 second to 3 minutes by means of a knurled nut on the relay. Thirty second time delay is recommended to allow the oscillator tube and mercury vapor rectifiers to come up to operating temperature.

4.2. CONTROL CIRCUIT OPERATION.

4.2.1. On the upper front door of the transmitter are four push buttons and four pilot lights labeled FIL. ON-OFF, and PLATE ON-OFF. These buttons operate the relays as shown in figure 4-2 to turn the power circuits off and on automatically.

Reference to figure 4-2 will show thatit is possible to turn the complete transmitter on by pushing the PLATE ON button as follows:
(a) PLATE ON button closes hold relay K273 which closes filament relay K251 and holds both relays closed.
(b) Time delay relay K 261 closes ex-citer plate relay K262which closes plate relay K274 through contacts on the holding and overload relays.

GIRCUTT THEORY

Figure 4-1 Power Control Circuit

Figure 4-2 Power Control Cirouit (Filament ON Button Pressed)

Figure 4-3 Power Control Circuit
(Plate ON Button Pressed)

The FILAMENT OFF button turns off the complete transmitter by opening all the relay circuits. The FILAMENT ON button is connected so that the filaments (and exciter plate) may be turned on without the intermediate and high voltage plate power coming on, since the PLATE ON button must be closed to close the hold relay and the hold relay must be closed to close the plate relay.

The PLATE OFF button is connected so that the intermediate and high voltage plate power may be turned off (by open-ing the hold relay) without turning off the filaments and time delay relay.

Also, the primary interlocks on both rear doors, the upper front door and the vertical rack are connected in series with the PLATE OFF button. These together with the mechanical shorting switches which insure discharging of the filter capacitors, prevent injury by touching high voltage circuits.

WARNIMG

THE VERTICAL RACK DOES NOT OPERATE A HIGH VOLTAGE SHORTING SWITCH.

The exciter chassis is interlocked to turn offall plate supplies when opened. However, since this interlock does not release the hold relay, the plate power comes on automatically when the exciter chassis is closed.

4.3. RF AND AUDIO CIRCIIITS.

4.3.1. EXCITER AND PHASITRON CIRCUITS.

(Refer tofigure 4-4.) The carrier frequency is generated by a crystal oscillating in the vicinity of 200 kilocycles. The crystal oscillatoris a regenerative type u:sing a type 6SJ7 tube. The output is fed to a buffer using a type 6SJ7 tube. The buffer outputis used to drive
a phase-splitting network to provide three-phase voltages for the input deflector grids of a Phasitron tube. (Refer to figure 4-4.) Anodes 1 and 2 are at positive d-c potential and draw electrons from the cathode radially in the form of a tapered thin-edge disc as dictated by the first and second focusing electrodes. This electron disc with the cathode as its axis, passes between a neutral plane and a three phase deflec-tor-grid assembly, The deflector-grid assembly consists of 36 separate wires with every third wire connected together, forming three groups of twelve. (Refer to figure 4-5.) The three phase voltages are applied to these deflectors, which inturn provide a rotating electrostatic field between the deflectors and the neutral plane, and warp the electron wheelinto a ruffled electron disc. (Refer to figure 4-6.)

The sinusoidal ruffle at the edge of the electron disc falls upon anode 1 , which is perforated in a half-cycle arrangement to match the edge of the disc. (Refer to figure 4-7). As the disc rotates, the sinusoidal edge successively passes through the perforations, or is collected by the metallic barrier separating them. A push-pull tuned circuit pleced between these two anodes is driven by the alternate collections of electrons by the two anodes, and supplies voltages at the crystal frequency for driving subsequent doublers and triplers to raise the frequency to that of the radiated carrier.

The second focus electrode, in addition tohaving an electrostatic influence upon the beam, is made of magnetic material and acts as a magnetic concentrator to confine the flux produced by the audio modulating coil to a narrow region at the edge of the deflector grid.

The action of this magnetic field is to

Figure 4-5 Vertical Section of the Tube and Modulator Coil. Connections to the Transmitter Circuit are Indicated.
berd the electron stream, edvancing or reiurding the phase of the sinusoidal ruffiled edge with respect to the perforated anode, and introducing a corresponding phase shiftin the tuned circuit.

The magnetic focus electrodes are mountEu with the three-phase deflector grid at the bottom to keep the input leads as shortas possible. In addition, the stem ariangement is oriented to place the first and second anode leads diametricaliy opposite the threewphase inpat leads so that intervening shielding can
 reduse the coupling to a minimum. The

Tigure 4-6 Perspective View of the Electron Disc in the Phasitron. Tube. In this Position Minimum Current is Collected at Perforated Anode No. 1.

Figure 4-7 Developed View of Grid Structure and Natural Plane
flared cone-shape second focus electrodes are made of siliconnicaloi to provide low hysteresis loss. The concentration provided by these electrodes improves the megnetic sensitivity by a factor of three over thet which could be obtained

byaction directly on the electron stream.
There are three radialslots cut in each plate to provide cleerance for the anode ears and toreduce the eddy current loss at high frequencies. The anodes are made from nonmagnetic material to prevent a magnetic short circuit between the two second-focus electrodes. The neutral plane is mounted in the upper half of the tube directly opposite the threephase deflector assembly. The cathode assemblyis a standard $6 J 5$ element coated for a quarter of an inch. The active part of the electron stream is limited by the edges of the first focus electrodes.

The bulb length is made longer than the

Figure 4-8 Position of the Electron Disk for Maximum Current Collected at Anode No. 1. as a Result of Modulation by the Magnetic Coil.
electrode assembly would normally require, to act as a handle for removing the tube from a permanently mounted modulating coil. The normal frequency at which the tube operates in the 732A FM broadcast transmitter is between 181 and 223 kilocycles.

The sensitivity of the tube to magnetic deflection is high and is sufficient to give a phase shift of approximately one radian per each 2.7 gauss change in field. A curve of phase deviation plottod against fieldstrength will indicate a high degree of linearity over a plus or minus 360 -degree range, with increasing sensitivity for further excursions.

The d-c potentials associated with the first and second focus, the three-phase deflectors, and the neutral plane must be adjusted for minimum signal distortion. The only test that can be performed to insure the required limits is an actual operation test in the FM transmitter, with subsequent measurement in a low-distortion detector. The radiofrequency driving voltages should be in excess of 35 rms volts, mensured from phase to neutral.

The audio power required tomodulate the tube to full swing is less then twenty milliwatts.

A transmitter using a phase modulation system in which the carrier is driven directly from a crystal-controlled oscillator is ideal for satisfying the carrier frequency stability requirement.

In a phase modulator, the harmonic distortion is a function of the phase swing employed, and since, for a constant frequency swing (corresponding to modulation percentage), the phase swing is inversely proportional to the modulating frequency, a phase modulator will have inherently low harmonic distortion in the middle audio frequency range.

The multiplication requiredis inversely proportional to the maximum phase swing that can be employed in the modulator without exceeding the permissible value of harmonic distortion. The relationship of the factors is, multiplication=

Carrier swing
Audio frequency x phase swing
or minus 75 kc swing of the carrier, at a modulation frequency of 50 cycles, an angular swing of $75,000 / 50$ or 1500 radians is required. If a total multiplication of 486 is used between the modulator and the output of the transmitter, the modulator must be capable of operating through an angle of plus or minus $1500 / 486$ radians within the permissible distortion limits. This imnediately shows the advantage of the phasitron tube, with which it is possible to use a phase swing of plus or minus 3.5 radinns without exceeding 1.5 percent distortion.

The modulation circuit function is shown in figure 4-4. The crystal oscillator circuit employs a6SJ7 tube with a tuned plate circuit. A low temperature coefficient quartz crystal provides a high degree of frequency stability. The crystalis contained in an oven thermostatically controlled and is held at a temperature of $60^{\circ} \mathrm{C}$.

The oscillator is followed by a buffer amplifier that drives a phase-splitting circuit to develop the three-phase voltages for the deflector elements of the Phasitron modulator tube. It functions essentially as a single phase to twophase conversion accomplished by the capacitor Cl and resistor RO2O, and a Scott-connected transformer system comprising inductance LI and L2 with a cen-ter-tapped secondary, and the parallel tuned circuit L3, C3, C4.

Since the Phasitron is modulated by a magnetic field, fields other than those produced by the audio input will cause

-
$\because \cdot$
noise modulation of the carrier. These stray fields may be caused by power transformers in the transmitter unit itself or by external equipment. To avoid this source of trouble, the modulator tube and the field coil that produces the modulation are enclosed in a magnetic shield made of high permeability material. A further precaution taken to: keep the carrier noise level at a low value is the use of a dme filament supply for the Phasitron tube.

The audio system consists brea push-pull amplifior stage with two type 6SJ' tubes connected as triodes. The input is applied to the 6SJ7 tubes through a preemphasis network and input transformer, and the outputis connected to the phasitronfield coil through on output trans-
former. The field coil is designed to appear as nearly as possible like a pure inductance over the entire audio-frem quency rarge from 50 to 15,000 cycles, By holding a constantvoltage across the coil at all audio frequencies, the current through the coil and consequently the magneticfield in the phasitron tube will be inversely proportional to the modulating frequericy: This is exactly the correction required to convert from phase modulation to frequency modulation.

Following the Phasitron in the exciter is a doubler: using a type 6SJ7, two triplers using type 6SJ7 tubes, an amplifier using a type 6SJ7 tube and a type 6 V 6 tripler in the output. The output of the 6 V 6 tripler is link coupled to the grid coil of the first 829B which is a

Figure 4-10 Audio Amplifier Schematic

tripler. The plate circuit of the first 829B is inductively coupled to the grid coil of the segond 829 B which is also a tripler. The output of the second 829B is link coupled to the grids of the 4X600F power amplifier tubes. The grid cipcuit of the $4 X 500 \mathrm{~F}$:s uses a paraliel line system and is tuned to resonance with a varlable capacitor. The plate circuit of the power amplifier makes use of inductance tuning with no circuit capacity other than thet of the tubes.

The variation of inductance is accomplished by moving the shorting bar up and down the parallel lines by means of a threaded screw operated by a small motor, The motor is operated from the control panel. A tank circuit of this type has a high inductance-tarcapacitance racio; thereby keeping the circulating current low and providing high circuit efficiency. The entłre frequency range 88 to 108 megacycles con be covered.

The power amplifier circuit requires a
small amount of neutralization. This is accomplished by using adjustable cylinders close to the power amplifier tubes.

Radio frequency output from the power amplifier is inductively coupled py an adjustable loop to a low-impedance ooncentric transmission line. A variable capacitor is in series with each side of the Ioop. One of these capacitors is seminfixed and the other is motor tuned. In the event the line tuning capacitor reaches a maximum or minimum setting, it will be necessary to adjust the semi..fixed antenna capacitor by hand to a point where the proper tuning will fall into the middle range of the motor driven capacitor. The purpose of these capacitors is to tune out the reactance in the line.

A thermocouple for indicating r-f surrent to the antenna is located at the junction box of the transmission fine. The antenna current meter, M231A; is located on the front panel.

Figure 4-11 Final Amplifier Schematic

SECTION 5

OPERATORS MA INTENANCE

5.1. GENERAL.

This radioequipment has been constructed of materials considered to be the best obtainable for the purpose, and has been carefully inspected and adjusted at the factory to reduce maintenance to a minimum. However, for best operation, routine checks of the equipment should be made and existing faults corrected immediately.

5.2. ROUTINE CHECKS.

(a) Examine all mechanical parts such as motor driven assemblies and menually operated switches for excessive wear.
(b) Examine electrical system for excessive heating of transformers, resistors, chokes, etc. The constant voltage transformer normally operates at a higher temperature than standard trensformers.

Figure 5-? Control Panel (Rear View)
(c) A check on the emission of all vacuum tubes should be made at least every 1000 hours of service. Examine the prongs on all tubes to makecertoin that they are free from corrosion and make good electrical contact when in the socket.
(d) Check all relays for proper operationand inspect relay contacts to make certain they are clean and free from pits.
(e) Checkall contacts of cable receptacles and plugs to assure a clean and firm mechenical connection.
(f) Inspect all component parts for dust accumulation.
(g) Check the operetion of the equipment in regard to noise and distortion.

It is important that this routine inspection be made as frequently as possible, and it should be thorough enough to includeall major electrical circuits and mechanical assemblies.
5.3. VOLTAGE AND CURRENT CHECKS.

Figure 5-3 Relay Panel

During operation, meters should be under constant observation to maintain the proper operating currents and voltages. A table showing the approximato meter indications under typical operating conditions is shown inSection 3 of this Instruction Book. Some variation in the current and voltage readings mny occur, but most satisfactory results are obtained from operation at rated values. The filament voltages should be within 5% of the recomended values for the type of tube used. Low voltage results in low emission which affects operation and reduces tube life. Too high a voltage causes rapid evaporation of cathode material, resulting in a short life.

5.4. CIRCUIT BREAKERS.

A check of all circuit breakers should be made immediately if the equipment becomes inoperative. This will assist in the isolation of the power circuits affected by the failure. Check all meter readings for assistance in isolating the difficulty.

5.5. TUBE REPLACEMENT.

Before removing tubes from their sockets, make certain that all high voltage circuits are shut off. Before removing high voltage tubes, make sure that the HV shorting switch is working. When replacing tubes, make certain that they are seated correctly and fully in their sockets. If the tube has a plate cap lead, be sure that the cap is in place and not lying against a metal chassis. When $866 / 866$ A rectifiers are placed in service for the first time, the filaments should be operatedat normal temperature for at least 20 minutes before plate voltage is applied. Always heve a good supply of spare tubes on hand for replacement in case of tube failure.
5.6, ROOM TEMPERATURE.
(a) Before turning on the equipment, the room temperature should be at least 15° centigrade or higher to protect the 866/866A rectifier tubes.

SECTION 6

PREVENTIVE MAINTENANCE

To insure peak performance and prevent failure or the impairment of the operation of the equipment, a definite schedule of periodic checks and maintenance procedures should be adhered to. It is suggested that a cleaning schedule be set up to include only a limited amount of cleaning and dusting to be done at one time. In this way it will require only a few minutes ench night after shut down and a more thorough job will be accomplished. Assign a different section of the transmitter to be covered each night. Arrange the schedule so that a complete coverage of the transmitter is obtained in a week's time.
6.1. GENERAL.

The greatest enemy to uninterrupted service in equipment of this type is corro.sion and dirt. Corrosion is accelerated by the presence of dust and moisture. It is impossible to keep moisture out of the equipment in certain localities, but foreign particles and dust con be periodically removed by means of a soft brush and a dry oil-free jet of air. Although the cabinetis equipped with $\%$ dust filter which will remove most of the dust particles, there is always a slight accumulation of dust in the vicinity of circuits at a high potential above ground. Remove dust as often as a parceptible quantity accumalates atany place in the equipment. It is very important that rotating equipment such as the variable capacitors, tap switches, etc., be kept free from dust to prevent undue wear. Corrosion resulting from salt spray or salt laden atmosphere may cause failure of the equipment forno apparent reason. In general, it will be found that contacts such as the tap switches, tube prongs, and cable plug connectors are
most affected by corrosion. When it is necessary to operate the equipment in localities subject to such corrosive atmosphere, inspection of wiping contacts, cables, plugs, relays, etco, should be made more frequently in order to keep the equipment in good condition.

6.2. AIR FILTER.

The spun glass filter elements at the rear of the transmitter cabinet will give more satisfactory life if the elements are cleaned once every two weeks. A small vacuum cleaner is a satisfactory means of removing surface dirt. The elements should be replaced whenever the spun gless appears to be appreciably clogged by dust and grease.

6.3. LUBRICATION.

6.3.1. Ventilating Blower.

(a) Lubricate the bearings of the ventilnting blower motor with spindle oil of a viscosity of 190-220 Saybolt Universal Seconds at $100^{\circ} \mathrm{F}$, such as Cities Service Pacemaker \#2 or equal.
(b) Use a small amount at one time.
(c) Lubricate periodically.

6.3.2. Tuning Motors and Assemblies.

(a) Iubricete tuning motor assemblies with the same type spindle oil as used on the ventilating blower motors.
(b) Usea small amount at any one time.
(c) Lubricate periodically.
6.4. ROTTINE CHECKS.

6.4.1. Tube Check.

(a) A check on the emission of 2.11 vacuum tubes should be made at least every 1000 hours of service.
(b) Keep a record of the length of time the tubes are in use. Filament and plate running time meters are provided.

Figure 6-1 Blower and Motor Assembly

(c) Operate tubes as near their rated values of voltages and currents as possible.
(d) Replace tubes that have been in service a long time with new ones.
(e) Visually inspect the elements inside of the tubes. Elements may have become warped, increasing the probability of short-circuiting.
(f) When $866 / 866 \mathrm{~A}$ mercury vapor rectifiers are putinto service for the first time, the filaments should be operated at normal temperature for at least 20 minutes before plate voltage is applied.
6.4.2. Mechenical Inspection.
(a) Checkall connections at least once a month. Resolder loose contacts. Tighten all nuts, bolts and screws if any loose ones are found.
(b) Checkall contacts of cable receptacles and plugs to assure clean, firm mechanical and electrical connection.
(c) Inspect interlock switches in the front and rear doors for proper operation.
(d) Examine all mechanical parts of motor driven assemblies for excessive wear.

Figure 6-2 Tuning Motors

Figure 6-4 732A (Front View) Interlock and High Voltage Shorting Switch Location

Figure 6-3 732A (Rear Viev) Interlock and High Voltage Shorting Switch Location

SECTION 7

CORRECTIVE MAINTENANCE

7.1. GENERAL.

If routine maintenance checks and inspection schedules, as outlined in Sections 5 and 6, are performed regularly, very little trouble is likely to occur with this equipment. However, if trouble is encountored, n systematic procedure of testing should be followed to quickly isolate the circuit at fault. Althoughit is impossible to foresee every case of trouble that may develop, most

Figure 7-1 Remove Phasitron Tube
troublos will cause abnormal readings.

7.2. TROUBLE SHOOTING.

7.2.1. Tube Failure. - The most frequent cause of trouble in transmitting equipment is tube failure. If a fault occurs in the equipment, isolation of the circuit at fault is helpful in determining the location of the defective tube. Defective tubes causing an overload in power circuits may usuallybe located by
inspection. It will be found that excessive heating or sputtering within vacuum tubes is a good indication of fault in the tube circuit. Low emission tubes may be the cause of erratic or poor performance of the equipment. If there is any doubt concerning the emission of any tube, it should be checked immediately and replaced if defective. Tubes with electrical noises cause excessive distortion or hum. This fault may be difficult to isolate to a perticulartube, but by replacing each tube with a tube known to be in good condition, the defecitve tube can usunlly be located. It will be noticed that there may be one or two 866/866A mercury vapor rectifier tubes that "fire" intermittently. This does not necessarily indicate trouble or a defective tube. The demand on the power supply caused by a varying load will bring about this condition. If a set of 866/866A tubes can be found that are equally balanced, they may "fire" simultaneously.
7.2.2. Isolating the Trouble.
(a) Before starting on any extensive set of tests, examine the position of all switches and controls and make sure that they are in the correct position.
(b) A check of all circuit breakers and d-c overload relays should be made to ascertain the powercircuits affected by the trouble.
(c) Check the circuits in the order they are made operative in the process of starting the transmitter.
(d) Compare the readings on all meters with those shown in the table in Section 3. This table lists the typical operating voltages and currents of the variious circuits of the transmitter.

Figure 7-2 Low Voltage Power Supply (Rear View)

Figure 7-3 Low Voltage Power Supply (Front View)

Figure 7-4 Upper Door Parts Arrangement.

Figure 7-5 732A Front Upper Section Parts Arrangement

Figure 7-6 Power Amplifier Grid Circuit Parts Arrangement

Pigure 7-8 Exciter Chassis (Rear View)

GL-2H2I PHASITRON

```
Heater
    Voltage 6.3 volts d-c
    Current 0.3
    ampere
Direct Interelectrode Capacitances, Approximate
    Deflectors to Plate | .0.025
    Plate 1 to Plate 2 1.0
Frequency for Maximum Ratings 500
Pin 1 - No connection
Pin 2 - Deflector No. 4
Pin 3-Deflector No. I
Pin 4 - Deflector No. 2
Pin 5 - Deflector No. 3
Pin 6 - Grid No. !
Mountling Position
Base Description - Medium-Shell Magnal Il-Pin
```


BOTTOM VIEW
Maximum Ratings and Typical Operating Conditions

PHASE MODULATOR

```
Heater Voltage
Plate No. l Voltage
Plate No. 2 Voltage
Deflectors No. 1, 2 and 3 Voltage
Deflector No. }4\mathrm{ Voltage
Grid No. 1 Voltage
Grid No. 2 Voltage 25
Cathode Current 4
Radio-Frequency Driving Voltage
    (phase to neutral) 35
Maximum Audio-Modulating Power for
    \pm180}\mp@subsup{}{}{\circ}\mathrm{ Phase Shift
Distortion.at }\pm18\mp@subsup{0}{}{\circ}\mathrm{ Phase Shift
Radio-Frequency Output Voltage
```

85 30 10 25435

50


```
Heater Voltage
Plate No. l Voltage
Deflectors No. 1, 2 and 3 Voltage
Deflector No. 4 Voltage
Grid No. 1 Voltage
Cathode Current 4
Radio-Frequency Driving Voltage (phase to neutral) 35
Maximum Audio-Modulating Power for \(\pm 180^{\circ}\) Phase Shift
Radio-Frequency Output Voltage
```

TYPICAL OPERATION

200
250

MAXIMUM RATING
volts d-c
300 volts
300 volts
100 volts
100 volts
25 volts
150 volts
6 milliamperes
volts RMS
milliwatts per cent volts RMS
(e) Make a visual inspection of all tubes, resistors and chokes. Tubes may be sputtering indicating shorts, or their plates may showexcessive color, indicating a heavy current drain. Resistors and chokes may be discolored due to a short.

7.2.3.Failure of Filament Voltage Supply.

Symptoms:

(a) Nofilament voltage applied to any tube in the equipment.
(b) No filament voltrge applied to one certain tube in the equipment.
(c) Ventilating blower not operating.
(d) Filament pilot light not lit.

Probable Causes:
(a) Constant voltage transformer defective.
(b) Filament trans formers applying filament voltage to individual tubes defective.
(c) Filament relay contactor (K251) defective.

Correction:

(a) In case the constant voltage transformer has burnt out, the equipment can be operated temporarilyby disconnecting the constant voltage transformer and connecting the leads that originally ran to the primary, to the secondary leads. The filament voltage may vary somewhat, but

- Figure 7-12 Decibels Versus Frequency Cvcles Per Second, With Pre-Emphasis

Figure 7-13 Decibels Versus Frequency Cycles Per Second, Hithout Pre-Emphasis
this arrangement will be satisfactory until the constant voltage transformer con be repleced.
(b) Replace individual filament transformers that are burnt out.
(c) If the filament relay contactor (K251) has become defective, it is best to replace it with a new one. Adjustments are very critical on this type of relay.

7.2.4. Exciter Plate Supply Voltage Feilure.

Symptoms:

(a) Ist PLATE pilot lamp does not light.
(b) No plete voltage on M24l.

Probnble Causes:
(a) Door interlock open.
(b) Time delay relay hes not operated.
(c) Miscroswitch in time delay reley is defective.
(d) Exciter plate relay defective.
(e) Defective component in exciter power supply.
7.2.5. Intermediate Plate Supply Voltage Failure.

Symptoms:

(a) No indication of plate current in the 829B multiplier tubes.
(b) Rectifier tubes do not glow.

Probable Cause:
(a) HV shorting switch is closed.
(b) Defective plate contactor.
(c) Defective component in intermediate voltage power supply.

> 7.2.6. High Voltage Does Not Come On When Plate ON Button is Pressed. Symptoms:
(a) Plate pilot lamp does notlight and

Figure 7-14 \% of Distortion Versus Frequency Cycles Per Second
there is no indicntion of plate voltage on the power amplifiers.
(b) Plate pilot lamp lights but there is no indication of plate voltage on the power amplifiers.

Probable Causes:
(a) HV shorting switch closed..
(b) Defective part in h-v power supply.
7.2.7. Distortion. - Very little distortion is likely to occur with this equipmentafter it has been properly adjusted. However, if it does sppear, the 3 phase trensformer that is associated with the Phasitron tube should be re-adjusted for minimum distortion, Also, the audio balance and phasitron bias controls should be "trimned-up".
7.2.8. Parasitic Oscillations. - Parasitios are guardedagainst in the design of this equipment. The use of parasitic suppressors dampens parasitic oscillations in the r-f driver circuits. With the final amplifier properly neutralized; there should be no trouble with parasitics.

[^0]Symptoms:
(a) The power amplifier grid or plate current jumps when tuning the plate circuit of the power amplifier.
(b) Maximumgrid currentis not obtained when plate circuit is at resonance.

Probable Ccuse:
(a) Grid to plate capacity of power amplifier tubes has changed with aging tubes.
(b) New tubes have been installed and the grid to plate capacity of these new tubes is different than the grid to plate capacity of the old tubes.
(c) The neutralizing capacitor is out of adjustment.

Correction:
Refer to the paragraph on neutralization procedure in Section 2 of this book and re-neutralize.
7.2.10. Ventilating Blower. - It is important that the ventilating blower motor be Iubricated periodically. This motor is operatingcontinuouslyand consequently,
should be kept well oiled. The brushes should be examined forwear periodically.
7.2.11. Tuning Motors.- To minimize the wear in these motors and their assemblies, they should be lubricated frequently with a light oil. They should be observed often for excessive wear and replaced if necessary.
7.2.12. Servicing the Equipment. - When service work or replacement of parts is necessary, it is an easy matter to gain access to all components of the transmitter. Relays are made available by removing dust cover. All wiring and components of the exciter can be exposed by opening the wing head studs and lowering the exciter chassis. The wiring and components of the exciter power supply are made available by removing the shield plate that is located beneath the exciter chassis. The wiring of the control panel canbe seen when the vertical chassis is in the forward position. Also, the intermediate and h-v filter panels are accessible with the vertical forward. Power multipliers andall parts on the door may be reached by opening upperdoor and removing shield covers.

The constant voltage transformer, h-v voltage transformerand power amplifier and output circuits are accessible from rear.

Power amplifier grid circuit components are made available from rear by removing side plates on forward portion of PA compartment.

A phasitron tube ejector is included to assistin changing Phasitron tubes. When servicing components in the front upper door panel, remove the two dust covers.

7.2.13. Typical Volteges.

Tube	Pin	Voltage
Crystal Osc. V001 6SJ7		
Filament Voltage	$2 \& 7$	6.3 v
Cathode Voltage	5	.05
Grid (Gl) Voltage	4	-7.0
Grid (G2) Voltage	6	113
Grid (G3) Voltage	3	.05
Plate Voltage	8	180
Buffer voll 6SJ7		
Filament Voltage	$2 \& 7$	6.3 v
Cathode Voltage	5	6.4
Grid (G1) Voltage	4	0
Grid (G2) Voltage	6	120
Grid (G3) Voltage	3	6.4
Plate Voltage	8	305
lst Doubler V03l 6SJ7		
Filament Voltage	$2 \& 7$	6.3 v
Cathode Voltage	5	0
Grid (Gl) Voltage	4	-5.4
Grid (G2) Voltage	6	128
Grid (G3) Voltage	3	0
Plate Voltage	8	305
lst Tripler Vo4l 6SJ7		
Filament Voltage	$2 \& 7$	6.3 v
Cathode Voltage	5	0
Grid (G1) Voltage	4	-34.0
Grid (G2) Voltage	6	136
Grid (G3) Voltage	3	0
Plate Voltage	8	305
2nd Tripler V05l 6SJ7		
Filement Voltage	$2 \& 7$	6.3 v
Cathode Voltage	5	0
Grid (G1) Voltage	4	-60.0
Grid (G2) Voltage	6	144
Grid (G3) Voltage	3	0
Plate Voltage	8	305

Tube	Pin	Voltage
Amplifier V061 6SJ7		
Filament Voltage	$2 \& 7$	6.3 v
Cathode Voltage	5	0
Grid (GI) Voltage	4	-57.0
Grid (G2) Voltage	6	133
Grid (G3) Voltage	3	0
Plate Voltage	8	305
3rd Tripler V071 6V6		
Filament Voltage	$2 \& 7$	6.3 v
Cathode Voltage	8	21.5
Grid (GI) Voltage	5	-64,0
Grid (G2) Voltage	4	265
Plate Voltage	3	310
Audio Amplifier V081 6SJ7		
Filament Voltage	$2 \& 7$	6.3 v
Cathode Voltege	5	11.6
Grid (Gl) Voltage	4	0
Grid (G2) Voltage	6	305
Grid (G3) Voltage	3	305
Plate Voltage		305
Audio Amplifier V082		
Filament Voltage	$2 \& 7$	6.3 v
Cathode Voltage	5	10.4
Grid (Gl) Volts.ge	4	0
Grid (G2) Voltage	6	305
Grid (G3) Voltage	3	305
Plate Voltage	8	305

Tube	Pin	Voltage
$\text { lst Int. }{ }_{829 \mathrm{~B}}^{\text {Amp. V201 }}$		(DC) (AC)
Filament Voltage	187	$94 \quad 12.6$
Filament Center Tap	5	94
Cathode Voltege	4	50
Grid 1 of Unit 1	6	-105
Grid 1 of Unit 2	2	-105
Grid (G2) Voltage	3	185
Plate Voltage	P1 P2	580
2nd Int. Amp. V2II 829B		(DC) (AC)
Filament Voltage	$1 \& 7$	$94 \quad 12.6$
Filament Center Tap	5	94
Cathode Voltage	4	70
Grid 1 of Unit 1	6	-210
Grid 1 of Unit 2	2	-210
Grid (G2) Voltage	3	215
Plate Voltage	P1 P2	580
4X500F Power Amp. V221		(DC) (AC)
Filament Voltage	1 \& 5	205 v
Grid (Gl) Voltage	3	-180
Grid (G2) Voltage	2 \& 4	350
Plate Voltage	P Cap	3500
4X 500F Power Amp. V222		(DC) (AC)
Filament Voltage	1 \& 5	205 v
Grid (Gl) Voltage	3	-180
Grid (G2) Voltage	$2 \& 4$	350
Plate Voltage	P Cap	3500

SECTION 8
PARTS LIST
732A

PARTS LIST

PARTS LIST

ITEM	CIRCUIT FUNCTION	description	COLLINS part number
C206	V201 screen bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 500 WVDC (Part of X201)	912028600
0207	V201 plate tuning capacitor	CAPACITOR: Dual section; 6.8-31 mmf per section	922001800
C208	V201 plate bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 1500 WVDC	913010100
c211	V2ll grid tuning capacitor	CAPACITOR: Dual section; section CAPACITOR before fabrication	$\begin{array}{lll} 503 & 1761001 \\ 9220018 & 00 \end{array}$
C212	V2ll grid bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 1500 WVDC	913010100
$\begin{aligned} & \mathrm{C} 213, \\ & \mathrm{C} 214 \end{aligned}$	V211 filament bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 500 WVDG (Part of X211)	912028600
C215	V2ll cathode bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 500 WVDC (Part of X21.1)	912028600
0216	V21l screen bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 500 WVDC (Part of X21I)	912028600
0217	V2ll plate tuming capacitor	CAPACITOR: Dual section; 6.8-31 mmf per section	922001800
C218	v2ll plate bypass	CAPACITOR: 1000 UWIf $\pm 20 \%$; 1500 WVDC	913010100
C220	Final amp. grid blocking capacitof	CAPACITOR: $0.002 \mathrm{mf} \pm 10 \%$; 2000 WDDC	950220140
$\begin{aligned} & \text { C221, } \\ & \text { C222, } \end{aligned}$	$\underset{\text { bypass }}{\text { Final amp. grid }}$	CAPACITOR: $1000 \mathrm{mnf} \pm 20 \%$; 1500 WVDC	913010100
0223	Final amp. grid tuning capacitor	$\begin{aligned} & \text { CAPACITOR: Dual section; } \begin{array}{c} 6.8-31 \text { mmf per } \\ \text { Section } \end{array} \quad \begin{array}{c} \text { CAPACITOR before fabrication } \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|lll} 503 & 1761 & 001 \\ 922 & 0018 & 00 \end{array}$
$\begin{aligned} & \mathrm{C} 224, \\ & \mathrm{C} 225 \end{aligned}$	V22l filament bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 1500 WVDC	913010100
$\begin{aligned} & \mathrm{C} 226, \\ & \mathrm{C} 227 \end{aligned}$	V222 filament bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 1500 WWDC	913010100
$\begin{aligned} & \mathrm{C} 228, \\ & \mathrm{C} 229, \end{aligned}$	V221 screen bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 20 \%$; 1500 WVDC	913010100
$\begin{aligned} & \text { C230, } \\ & \text { C231 } \end{aligned}$	V222 screen bypass	CAPACITOR: 1000 maf $\pm 20 \%$; 1500 WNDC	913010100
C232	Screen bypass	CAPACITOR: $1000 \mathrm{mmff} \pm 20 \%$; 1500 WVDC	913010100
13572			$8-3$

PARTS LIST

ITEM	CIRCUIT FUNCTION	description	collins part number
C233	Final amp. plate bypass	CAPACITOR: $1000 \mathrm{mmf} \pm 5 \%$; 5000 WVDC	938206600
C234	Antenna link tuning capacitor	PLATE:Capacitor; upper; 3-1/2" dian x $1 / 4^{\prime \prime}$ thk PLATE:Crpacitor; lower; 3-1/2" diam x $1 / 4^{\prime \prime}$ thk	$\begin{array}{lll} 5031803002 \\ 5031866002 \end{array}$
$\begin{aligned} & \mathrm{C} 235, \\ & \mathrm{C} 236 \end{aligned}$	Thermocouple bypass	CAPACITOR: $10,000 \mathrm{mmf} \pm 10 \%$; 300 WVDC	935211700
$\begin{aligned} & \mathrm{C} 237, \\ & \mathrm{C} 238 \end{aligned}$	m231A RF meter bypass	CAPACITOR: $0.004 \mathrm{mf} \pm 20 \%$; 1250 WVDC	925240440
C239	B221 reversing capacitor	CAPACITOR: $1 \mathrm{mf} \pm 10 \%$; 600 WVDC	956214200
C240	Antenna link tuning capacitor	PLATE:Capacitor; upper; 3-1/2" diam $\times 1 / 4^{\prime \prime}$ thk PLATE:Capacitor; lower; $3-1 / 2^{\prime \prime}$ diam $\times 1 / 4^{\prime \prime}$ thk	$\begin{aligned} & 5031803002 \\ & 5031866002 \end{aligned}$
C241	Bypass	CAPACITOR: $0.004 \mathrm{mf} \pm 20 \%$; 1250 WVDC	925240440
C242	M242 meter bypass	CAPACITOR: $0.004 \mathrm{mf} \pm 20 \%$; 1250 WVDC	925240440
0243	Bypass	CAPACITOR: $10 \mathrm{mmf} \pm 1 \mathrm{mmf}$; 500 WVDC	916000600
C244	Bypass	CAPACITOR: $10 \mathrm{mmf} \pm 1 \mathrm{mmf}$; 500 WVDC	916000600
C251	Bypass	CAPACITOR: $0.004 \mathrm{mf} \pm 20 \%$; 1250 WVDG	925240440
c271	Final amp. screen filter	CAPACITOR: $15 \mathrm{mf} \pm 20 \%$; 1000 WVDC	930005100
C272, C273, C274	Filter capacitor	CAPACITOR: $15 \mathrm{mf} \pm 20 \%$; 1000 WVDC	930005100
C281	M281 meter bypass	CAPACITOR: $0.004 \mathrm{mf} \pm 20 \%$; 1250 rVDC	925240440
C282	M282 meter bypass	CAPACITOR: $0.004 \mathrm{mf} \pm 20 \%$; 1250 WVDC	925240440
$\begin{aligned} & \mathrm{C} 283, \\ & \mathrm{C} 284, \end{aligned}$	HV filter capacitor	CAPACITOR: $4 \mathrm{mf} \pm 20 \%$; 5000 WVDC	930005300
C290	Bypass	CAPACITOR: $50 \mathrm{mmI} \max$. to 5 mmf min; 500 WVDC	917100700
CR091	Phasitron filament voltage rectifier	RECTIFIER: Dry disc; input 17 v AC rms; output $13.5 \pm 5 \%$ v DC at 1.2 smp .	353000400
E109		BOARD ASSEM: Connector; exc. power supply; 9 term	5031844002
E110		BOARD ASSEM: Connector; exc. power supply; 9 term	5031845002
E111	Audio input	BOARD: Terminal; 3 term	367403000
$8-4$			13573-1

PARTS LIST

ITEM	CIRCUIT Function	DESCRIPTION	COLLINS PART NUMBER
""."u"un"u"			
E201,		BOARD: Terminal; 12 10-32 threaded stud term	306003000
E202,			
E203,			
E204,			
E205,			
E206			
E207		BOARD: Terminel; 9 term	367006000
E208	Blower Motor	BOARD: Terminal; 4 term	306002700
E212	Power input	BOARD: Terminal; 3 term	306006900
1081		LAMP: Miniature bayonet bese; $6.3 \mathrm{v} ; 0.15$ amp; T-3-l/4 bulb	262324000
I251,		LAMP: Candelabra bayonet base; 120 v ;	262004100
1252,		6 w; S-6 bulb	
I253,			
1254,			
I255,			
I256,			
I257,			
I261,			
I280			
J001,		CONNECTOR: Wall mtg receptacle for termi-	357900300
J201,		nating cables with AN Plug UG-21/u;	
J202			
J203		CONNECTOR: 30 term wall mtg receptacle	370202600
J204		CONNECTOR: 30 term wall mtg receptacle	370202500
K251	$\begin{aligned} & \text { Filament control } \\ & \text { relay } \end{aligned}$	RELAY: Power contactor; 220 v ; 60 cps coil; $3 \mathrm{NO}, 10$ amp contacts	$\begin{array}{r} 405003300 \\ : 405042100 \end{array}$
K261	Time delay relay	RELAY: Timing; AC; 230 v ; 60 cps coil; SPDT; 10 amp contacts	$\begin{array}{r} 405011500 \\ 4405040300 \end{array}$
K262	```Exciter control relay```	RELAY: Power contactor; 220 v ; 60 cps coil; $3 \mathrm{NO}, 10$ amp contacts	$\begin{array}{r} 405003300 \\ 405042100 \end{array}$
K273	Plate control relay	RELAY: Circuit control; $220 \mathrm{v} \mathrm{AC}, 60 \mathrm{cps}$ coil; DPDT, 10 amp contacts	$\begin{array}{r} 405011200 \\ 405011300 \end{array}$
K274	Plate voltage relay	RELAY: Power contactor; $220 \mathrm{v} \quad 60 \mathrm{cps}$ coil: $5 \mathrm{NO}, 10 \mathrm{amp}$ contacts	$\begin{array}{r} 405005100 \\ 405043900 \end{array}$
K275,	Overload relay	RELAY: AC or DC current overload; 0.5 to 2	405009500
K281		amp coil; 2 NC contacts	
* Cciuponents for equipments designed for operation from 50 cps power source.			
13574-1 . 8-5			

PARTS LIST

item	circuit function	description	collins part number
L020	Modulating coil	COIL ASSEM: Phasitron; 6000 turns \#28 AWG duo enameled copper wire	5031935003
L075	RF choke	COIL: RF; $2.5 \mathrm{mh} \pm 10 \%$	240530000
1091	Phasitron filament supply filter choke	REACTOR: Filter; 0.1 hy	678010400
$\begin{aligned} & \mathrm{LO92}, \\ & \mathrm{LO93} \end{aligned}$	LV filter choke	REACTOR: Filter; 6 hy	678222000
L201	Link to L202 of V201 multiplier tube		5031826002
L202	Grid tank of v201	COIL ASSEM: 20 turns \#20 enameled copper wire; CT	5031822002
L203	RF choke in grid of V201	COIL: $\mathrm{RF} ; 0.5 \mathrm{mh} \pm 10 \%$	240000400
L206	Plate tank of V201	COIL ASSEM: 12 turns \#12 tinned copper wire;CT	5031823002
L207	Plate RF choke of V201	COIL ASSEM: 35 turns close wound \#22 AWG wire	5031616001
1231	Grid tank of V211	COIL ASSEM: 11 turns 执 2 tinned copper wire groove wound	5031824002
L212	RF choke in grid of V211	COIL: RF; $0.5 \mathrm{mh} \pm 10 \%$	240000400
$\begin{aligned} & \mathrm{L} 213, \\ & \mathrm{~L} 214, \end{aligned}$	Parasitic coil	COIL: RF; 8-1/2 turns \#21 ANG wire	240004100
L215	Plate tank of V211	COIL ASSEM: 3 turns	5031827002
L216	Plate RF choke of V211	COIL ASSEM: 35 turns close wound $\frac{4}{2} 22$ AWG wire	5031616001
L217	Coil link on L215	COIL ASSEM: 1 turn	5031618001
L221	Adjustable loop to the grid lines of final amp.	IOOP ASSEM: Grid coupling	5031708001
L222	Grid lines of final amplifier	GRID LINE: Left hand GRID LINE: Right hand	503 1837 002 503 1836 002
L223	Grid choke of V221	COIL ASSEM: 35 turns close wound \#22 AWG wire	5031616001
8-6			13575

PARTS LIST

* Components for equipments designed to operate from 50 cps power source. 8-7

PARTS LIST

PARTS LIST

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS part number
R025	V021 plate decoupling resistor	RESISTOR: $1000 \mathrm{ohm} \pm 10 \%$; 1 w	745308600
RO26	M24l multiplier resistor	RESISTOR: 7870 ohm $\pm 1 \%$; 1 w	722003200
R027	Voltage divider	RESISTOR: $3300 \mathrm{ohm} \pm 10 \%$ I W	745310700
R028	M241 multiplier resistor	RESISTOR: 1000 ohm $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745108600
R029	V021 plate No.l dropping resistor	RESISIOR: 47,000 ohm $\pm 10 \% ; 1 \mathrm{w}$	745315600
R031	V03l grid bias resistor	RESISTOR; 0,68 meg $\pm 10 \%$; 1 w	745320500
P.034	V03l screen dropping resistor	RESISTOR: $0.15 \mathrm{meg} \pm 10 \%$; 1 w	745317700
R035	V031. plate decoupling resistor	RESISTOR: 1000 ohm $\pm 10 \%$; 1 w	745308600
R036	M24l multiplier resistor	RESISTOR: $0.36 \mathrm{meg} \pm 5 \%$; 1 w	745319300
RO41	V041 grid bias resistor	RESISTOR: 82,000 ohan $\pm 10 \%$; 1 w	745316700
R042	M241 shuntresistor	RESISTOR: 1000 ohm $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745108600
R044	VO41 screen dropping resistor	RESISTOR: $0.12 \mathrm{meg} \pm 10 \%$; 1 w	745317400
R045	V04l plate decoupling resistor	RESISTOR: 1000 ohm $\pm 10 \%$; 1 w	745303600
R051	V05. grid bias resistor	RESISTOR: 68,000 ohm $\pm 10 \%$; 1 W	745316300
R052	M241 shuntresistor	RESISTOR: 1000 ohm $\pm 10 \%$: $1 / 2 \mathrm{w}$	745108600
R054	V051 screen dropping resistor	RESISTOR: $0.10 \mathrm{meg} \pm 10 \%$; 1 w	745317000
R055	V055 plate decoupling resistor	RESISTOR: 1000 ohm $\pm 10 \%$; 1 w	745308600
RC61	V06l grid bias resistor	RESISTOR: 68,000 ohm $\pm 10 \%$; 1 w	745316300
13578			8-9

PARTS LIST

ITEM	CIRCUIT Function	description	COLLINS PART NUMBER
R062	M241 shuntresistor	RESISTOR: 1,000 ohm $\pm 1.0 \% ; 1 / 2$ w	745108600
R064	V061 screen dropm ping resistor	RESISTOR: $0.10 \mathrm{meg} \pm 10 \%$; 1 w	745317000
R065	V061 plate decoupling resistor	RESISTOR: $1000 \mathrm{ohm} \pm 10 \%$; 1 w	745308600
R071	V071 grid bias resistor	RESIS'COR: $68,000 \mathrm{ohm} \pm 10 \%$; 1 w	745316300
R072	M241 shuntresistor	RESISTOR: $390 \mathrm{ohm} \pm 10 \%$; $1 / 2 \mathrm{w}$	745106900
R073	V07l cathode bias resistor	RESISTOR: 470 ohm $\pm 10 \%$; 2 w	745507200
R074	V071 screen dropping resistor	RESISTOR: 15,000 ohm $\pm 10 \%$; 1 w	745313500
R080	Attenuator	RESISTOR: 600 ohm; 1 w	379001200
R080A	Pre-emphasis network	RESISTOR: Pre-emphasis network; 600 ohm; $50-15,000 \mathrm{cps}$	379002600
R081	Load resistor	RESISTOR: $1200 \mathrm{ohm} \pm 10 \%$; 1 w	745309000
$\mathrm{RO} 2,$ $\text { RO8 } 3^{\circ}$	Load resistor	RESISTOR: $68,000 \mathrm{ohm} \pm 10 \%$; 1 w	745316300
R084	M241 meter shunt	RESISTOR: $4.3 \mathrm{ohm} \pm 5 \%$; 1/2 w	707009200
12085	Bias resistor	RESISTOR: 820 ohm $\pm 5 \%$; 1 w	745308200
R086	Balance control	RESISTOR: $400 \mathrm{ohm} ; .10 \mathrm{amp}$	3770006 c0
R2087	Bias resistor	RESISTOR: 820 ohm $\pm 5 \%$; 1 H	745308200
R088	Compensating network	RESISTOR: 27,000 ohm $\pm 5 \%$; 2 w	745514.500
R092	VO21 filament voltage var resistor	RHEOSTAT: 50 ohm $\pm 10 \%$; 25 w	735502000
R092	LV power supply bjeeder	RESISTOR: $16,000 \mathrm{ohm} \pm 20 \%$; 40 W	733141600
R093	VR 105 voltage dropping resistor	RESISTOR: $1600 \mathrm{ohm} \pm 20 \%$; 15 w	733195600
R094	Bleeder	RESISTOR: $0.22 \mathrm{meg} \pm 10 \%$; 2 H	745518400
8-10			13579

PARTS LIST

ITEM	circuit function	dESCRIPTION	COLLINS PART NUMBER
R201	V201 grid bias	RESISTOR: 16,000 ohm $\pm 20 \%$; 40 W	733141600
$\begin{aligned} & \text { R202, } \\ & \text { R203 } \end{aligned}$	Parasitic resistor	CHOKE, RF: 18 turns \#21 AWG wire; 1 ohm $\pm 20 \%$	240004000
R204	V201 cathode bias resistor	RESISTOR: 500 ohm $\pm 20 \%$; 40 w	733132300
R205	V201 screen dropping resistor	RESISTOR: 16,000 ohm $\pm 20 \%$; 40 w	733141600
R211	V2ll grid bias resistor	RESISTOR: 16,000 ohm $\pm 20 \%$; 40 w	733141600
$\begin{aligned} & \mathrm{R} 212, \\ & \mathrm{R213}, \end{aligned}$	Parasitic resistor	RESISTOR: 10 ohm $\pm 10 \%$; 1 n (Part of Lill3)	745300200
R224	V2ll cathode bias resistor	RESISTOR: $500 \mathrm{ohm} \pm 20 \%$; 40 W	733132300
R215	V21l screen dropping resistor	RESISTOR: 16,000 ohm $\pm 20 \%$; 40 w	733141600
R221	Screen dropping resistor for final amplifier	RESISTOR: $6300 \mathrm{ohm} \pm 10 \%$; 40 w	733138800
R222	Bias resistor for final amplifier	RESISTOR: 80 ohm $\pm 20 \%$; 40 w	733127400
$\begin{aligned} & \text { R223, } \\ & \text { R224 } \end{aligned}$	V22i grid bias resistor	RESISTOR: $\mathbf{i 6 , 0 0 0}$ ohna $\pm 20 \% ; 40 \mathrm{w}$	733141600
$\begin{aligned} & \text { R225, } \\ & \text { R227, } \end{aligned}$	Final amplifier filament center tap resistor	RHEOSTAT: W. $\mathrm{W}_{\text {: }} ; 50 \mathrm{ohm} \pm 10 \% ; 25 \mathrm{w}$	735502000
R228	Bias reaistor for final amplifier	RESTSTOR: 80 ohm $\pm 20 \%$; 40 w	733127400
R241	M242 meter shunt	RESISTOR: $0.17 \mathrm{ohm} \pm 1 \%$; 1 w	722002600
R242,	M24.2 metcr shunt	RESISTOR: 0.40 okm $\pm 1 \%$; 1 W	722002500
$\begin{aligned} & \text { R244, } \\ & \text { R245, } \\ & \text { R246 } \end{aligned}$	M242 meter shunt	RESISTOR: 4.17 ohm $\pm 1 \%$; 1 w	722002600
13580			8-11

PARTS LIST

PARTS LIST

PARTS LIST

ITEM	CIRCUIT Function	description	COLLINS PART NUMBER
S281	PA plate switch	CIRCUIT BREAKER: Magnetic; 3 overload coils; $10 \mathrm{amp} \mathrm{AC} ; 50 \mathrm{amp}$ cont; 230 v AC/250 $\mathrm{\nabla} \mathrm{DC}$	260040700
S282	PA tune switch	CIRCUIT BREAKER: Magnetic; 2 overload coils; $8 \mathrm{amp} \mathrm{AC} ; 50 \mathrm{amp}$ cont; $230 \mathrm{vaC} / 250 \mathrm{v} \mathrm{DC}$	260026100
S291	Tuning switch	SWITCH: Rotary; open neutral momentary contact; 5 amp 250 v AC	260052300
S292	TUNING selector	SWITCH: 3 P, 1 deck, 3 position, non-shorting	259012700
S292A	Selector switch		
S292B	Selector switch		
S292C	Selector switch		
S293	B22l overload	THERMOSTAT: shall open at $70^{\circ} \pm 5^{\circ} \mathrm{C}$	292002200
T081	Audio input transformer	TRANSFORMER: Pri: 600 ohm CT, sec: 50,000 ohm CT	677011400
T082	Audio output transformer	TRANSFORMER: Pri: 20,000 ohm CT, sec: 600 ohm CT	677011300
T091	Voltege for crystal heater oven	TRANSFORMER: Pri: $115,210,220,230,240 \nabla$, $50 / 60 \mathrm{cps}$, sec: $12.6 \nabla \mathrm{CT}, 2.5 \mathrm{amp}$	672008600
T092	Voltage for phasitron V02l filament	TRANSFORMER: Pri: $115,210,220,230,240 \mathrm{v}$, $50 / 60 \mathrm{cps}$, sec: $12.6 \vee$ CT 2.5 amp	672008600
T093	Filament voltage for exciter supply rectifier	TRANSFORMER: Pri: 210, 220, 230, 240, 250 v, 50/60 cps, sec \#1: $6.3 \vee \mathrm{CT}$, 5 amp sec \#2: 5 v CT, 7 amp	672008800
T094	Plate transformer for exciter supply	TRANSFORMER: Pri: 210, 220, 230, 240, 250 v, $50 / 60 \mathrm{cps}$, sec: $880 \vee$ CT, 0.142 amp	672010100
T251	Constant voltage trensformer	TRANSFORMER: Pri: 190-250 v single phase 60 cps ; sec: $230 \mathrm{\nabla}$ at 93% power factor 500VA	$\begin{array}{lll} 664 & 0026 & 00 \\ 664 & 0042 & 00 \end{array}$
T252	Filament transformer for 829B tubes	TRANSFORMER: Pri: 115, 210, 220, 230, 240∇ $50 / 60 \mathrm{cps}$, sec: 12.6 V CT, 2.5 amp	672008600
T256	Filament voltage for LV supply rectifiers	TRANSFORMER: Pri: 200, 230, 240 v sec: 2.5 © CT, 10 amp	$\vdots 672010200$
T257	Filament voltage for $4 \times 500 \mathrm{~F}$ omponents for equip	TRANSFORMER: Pri: 220, 230, $240 \vee 50 / 60 \mathrm{cps}$, $\mathrm{sec}: 5 \mathrm{vCT}, 14.5 \mathrm{amp}$ ments designed for operation from 50 cps power	672009800
8-14			13583

PARTS LIST

PARTS LIST

PARTS LIST

ITEM	CIRCUIT FUNGTION	DESCRIPTION	COLLINS PART NUMBER
".1.			
XV221,	Socket for V221,	SOCKET: 5 prong; ceramic	220101600
XV222	V222		
		SOCKET: 4 prong: IX base	220101800
	Socket for 271,	SOCKET: 4 prong; UX base	220101800
XV272,	V272, V281,		
XV281;	V282, V283		
XV283			
		-	
XYOOI:	Socket for 7001	SOCKET: Crystal; 7 contact "JUMBO"	220571100
Z010	RF transformer	TRANSFORMER ASSEM: Oscillator tank; 180-225kc	5031943003
		TRANSFORMER ASSEM: Phesing network: 180-225kc	
2020	RF trarısformer	TRANSFORMER ASSEM: Phasing network; 180-225kc	5031949003
2030	RF transformer	TRANSFORAER ASSEM: Amplifier tank; 180-225kc	5031944003
2040	RF transformer	TRANSFORNER ASSEM: Doubler tank; 360-450 kc	5031945003
2050	RF transformer	TRANSFORAER ASSEM: Tripler tank; 1080-1350kc	5031946003
Z060	RF transformer	TRANSFORMER ASSEM: Amplifier tank; 3.2-4.0 mc	5031947003
2070	RF transformer	TRANSFORMER ASSEM: Amplifier tank; 3.2-4.0 mc:	5031947003
2080	RF transformer	TRANSFOMAER ASSEM: Tripler tank; 9.6-12.0 mc	5031948003
,			
,		.	
,			
		-	
	.		
		-	
		1	
13586			8-17

Figure 8-5 Main Schematic

SERYICE RTPORT
 REPLLCEEBLE COMPONENTS

Please fill out this form and submit it by mail to the COLLINS RADIO COMPANI, CEDLR RAPIDS, IOWi, USA, when reporting failure of component parts. A properly completed repori must bo submitted for each part before any accounts will be adjusted. in accurate report will assure the correct replacement part.

THESE ENTRIES TO 3E MADE PY TEE COLLTNS RADIO COMPGNY
Received \qquad R.T, Nc: \qquad Replacement Order No. \qquad
Results of Factory Test: \qquad

Disposition: \qquad

[^0]: 7.2.9, Power Amplifier Stage Not Neutralized.

