Cedar Rapids Division | Collins Radio Company, Cedar Rapids, lowa

808A-1
 Console

Guarantee

The equipment described herein is sold under the following guarantee:
Collins agrees to repair or replace, without charge, any equipment, parts, or accessories which are defective as to design, workmanship or material, and which are returned to Collins at its factory, transportation prepaid, provided
(a) Notice of the claimed defect is given Collins within one (1) year from date of delivery and goods are returned in accordance with Collins instructions.
(b) Equipment, accessories, tubes, and batteries not manufactured by Collins or from Collins designs are subject to only such adjustments as Collins may obtain from the supplier thereof.
(c) No equipment or accessory shall be deemed to be defective if, due to exposure or excessive moisture in the atmosphere or otherwise after delivery, it shall fail to operate in a normal or proper manner.

Collins further guarantees that any radio transmitter described herein will deliver full radio frequency power output at the antenna lead when connected to a suitable load, but such guarantee shall not be construed as a guarantee of any definite coverage or range of said apparatus.

The guarantee of these paragraphs is void if equipment is altered or repaired by others than Collins or its authorized service center.

No other warranties, expressed or implied, shall be applicable to any equipment sold hereunder, and the foregoing shall constitute the Buyer's sole rightand remedy under the agreements in this paragraph contained. In no event shall Collins have any liability for consequential damages, or for loss, damage or expense directly or indirectly arising from the use of the products, or any inability to use them either separately or in combination with other equipment or materials, or from any other cause.

How to Return Material or Equipment if, for any reason, you should wish to return material or equipment, whether under the guarantee or otherwise, you should notify us, giving full particulars including the details listed below, insofar as applicable. If the item $1 s$ thought to be defective, such notice must give full information as to nature of defect and identification (including part number if possible) of part considered defective. (With respect to tubes we suggest that your adjustments can be speeded up if you give notice of defect directly to the tube manufacturer.) Upon receipt of such notice, Collins will promptly advise you respecting the return. Failure to secure our advice prior to the forwarding of the goods or failure to provide full particulars may cause unnecessary delay in the handling of your returned merchandise.

ADDRESS:

Collins Radio Company
Service Division
Cedar Rapids, Iowa

INFORMATION NEEDED:

(A) Type number, name and serial number of equipment
(B) Date of delivery of equipment
(C) Date placed in service
(D) Number of hours of service
(E) Nature of trouble
(F) Cause of trouble if known
(G) Part number (9 or 10 digit number) and name of part thought to be causing trouble
(H) Item or symbol number of same obtained from parts list or schematic
(I) Collins number (and name) of unit subassemblies involved in trouble
(J) Remarks

How to Order Replacement Parts

When ordering replacement parts, you should direct your order as indicated below and furnish the following information insofar as applicable. To enable us to give you better replacement service, please be sure to give us complete information.

ADDRESS:

Collins Radio Company
Service Division
Cedar Rapids, Iowa

INFORMATION NEEDED:

(A) Quantity required
(B) Collins part number (9 or 10 digit number) and description
(C) Item or symbol number obtained from parts list or schematic
(D) Collins type number, name and serial number of principal equipment
(E) Unit subassembly number (where applicable)

instruction book

808A-1
 Console

(C)Collins Radio Company 1962, 1963
coscitiale do an bully,

tABLE OF CONTENTS

Section Page
I GENERAL DESCRIPTION 1-1
1.1 Purpose of Instruction Book 1-1
1.2 Purpose of Equipment 1-1
1.3 Equipment Capabilities 1-1
1.4 Equipment Supplied 1-1
1.5 Equipment Required but not Supplied 1-1
1.6 Characteristics 1-1
1.7 Semiconductor and Fuse Complement 1-3
II INSTALLATION 2-1
2.1 Unpacking 2-1
2.2 Installation 2-1
2.2.1 Legs 2-1
2.2.2 Cables and Lines 2-1
2.3 Adjusting the Stylus Pressure 2-1
2.4 Cartridge and Styli Replacement 2-2
III OPERATION 3-1
3.1 General 3-1
3.2 Controls and Indicators 3-1
3.3 Prebroadcast Adjustments 3-1
IV PRINCIPLES OF OPERATION 4-1
4.1 General 4-1
4.2 Network Description 4-1
V MAINTENANCE 5-1
5.1 General 5-1
5.2 Delinitions 5-1
5.2 .1 RIAA 5-1
5.2.2 Noise 5-1
5.2.3 0 DBM 5-1
5.3 Test Equipment Required 5-1
5.4 Control Settings 5-2
5.5 Tests 5-2
5.5.1 D-C Measurements 5-2
5.5.2 Amplifier Test and Adjustments 5-2
5.5.2.1 Test Setup 5-2
5.5.2.2 Noise Level 5-2
5.5.2.3 Frequency Response 5-2
5.5.2.4 Distortion 5-2
5.5.2.5 Headphone and PA Output 5-3
5.5.2.6 Turntable Response 5-3
5.5.2.7 Turntable Distortion 5-3
5.5.2.8 Turntable Cue 5-3
5.6 Servicing Transistor Circuits 5-3
5.6 .1 General 5-3
5.6.2 Test Equipment 5-3
5.6.2.1 Transformerless Power Supplies 5-3
5.6.2.2 Line Filter 5-3

TABLE OF CONTENTS (Cont)

Section Page
5.6.2.3 Low-Sensitivity Multimeters 5-4
5.6.2.4 Power Supply 5-4
5.6.3 Electric Soldering Irons 5-4
5.6.3.1 Leakage Current 5-4
5.6.3.2 Iron Size 5-4
5.6.4 Servicing Practices 5-4
5.6.4.1 Heat-Sink When Soldering 5-4
5.6.4.2 Removal of Transistors From Operating Circuits 5-4
5.6.4.3 Plug-In Transistors. 5-4
5.6.4.4 Resistance Measurements In Transistor Circuits 5-4
5.6.4.5 Power Transistor Heat Sinks 5-4
5.6.4.6 Test Prods. 5-4
5.6.5 Trouble Shooting 5-5
5.6.5.1 Ohmmeter Test of Transistors 5-5
5.7 Turntable Maintenance and Adjustments 5-5
5.7.1 Adjustments 5-5
5.7.2 Lubrication 5-5
5.7.3 Cleaning 5-5
5.8 Stylus Removal and Installation 5-5
5.9 Stylus Holder Removal and Installation 5-6
VI PARTS LIST 6-1
VII ILLUSTRATIONS 7-1
LIST OF ILLUSTRATIONS
Figure Page
1-1 808A-1 Console, Over-all View (C795-03-P) 1-0
2-1 808A-1 Console, Outline and Mounting Dimensions (C795-13-4) 2-0
2-2 808A-1 Console, Rear View (C795-05-P) 2-1
3-1 808A-1 Console, Operating Controls and Indicators (C795-06-P) 3-1
808A-1 Console, Block Diagram (C795-02-5) 4-0
Test and Adjustment points (C795-07-P) 5-2
5-1
808A-1 Console, Top View with Component Identification (C795-10-P) 6-3
6-2 808A-1 Console, Top View with Turntables Removed for Component Identification (C795-11-P) 6-4
6-3 808A-1 Console, Rear View of Front Panel with Component Identification (C795-04-P) 6-5
6-4 808A-1 Console, Rear View with Component Identification (C795-08-P) 6-6
6 -5 808A-1 Console, Bottom View with Component Identification (C795-09-P) 6-6
6-6 808A-1 Console, Bottom View, Amplifier Boards with Component Identification (C795-12-P) 6-7
7-1 808A-1 Console, Schematic Diagram (C795-01-6) 7-1

LIST OF TABLES

Table Page
1-1 Equipment Supplied 1-1
1-2 Equipment Required but not Supplied 1-1
1-3 Semiconductor and Fuse Complement 1-3
2-1 Replacement Styli and Cartridge 2-2
5-1 Test Equipment Required 5-1

Figure 1-1. 808A-1 Console, Over-all View

SECTION I GENERAL DESCRIPTION

1.1 PURPOSE OF INSTRUCTION BOOK.

This instruction book presents information pertinent to installation, operation, and maintenance of the 808A-1 Console.

1.2 PURPOSE OF EQUIPMENT.

The 808A-1 Console, Collins part number 522-2609-00, is a portable, dual-turntable console that will feed program material from a remote location to the broadcast station via telephone lines.

1.3 EQUIPMENT CAPABILITIES.

The 808A-1 Console can simultaneously combine the two turntable outputs with any one of the three external inputs. The 808A-1 requires only headphones, 120volt, $60-\mathrm{cps}$ power, remote signal lines, and microphone for remote console operation.

The built-in phono equalization meets RIAA standards. A built-in VU meter is provided for monitoring program level. The light which illuminates the VU meter indicates when the power to the $808 \mathrm{~A}-1$ is turned on. A headphone jack is provided for program monitoring and indicator lights show which turntable is energized.

The self-storing legs can be detached and stored beneath the cabinet when the $808 \mathrm{~A}-1$ is being transported or used on a table. The bottom dust cover can be removed for maintenance. This cover protects the lower portions of the turntables, cables, and amplifiers.

The preamplifiers are attached to the control panel. The control panel can be removed for maintenance of the preamplifiers.

Panel controls include an external input selector which selects one of the external signal sources, MIKE 1, MIKE 2, or NEMO; two motor power switches; cue switches which are ganged to the off position of the FADE and MICROPHONE controls; three separate fade controls for the three inputs; MASTER GAIN, which controls the over-all outputsignal level; PUBLIC ADDRESS GAIN, which allows independent adjustment of the public address feed or other remote feed; headphone gain; and turntable shift levers for selecting turntable speeds of $33-1 / 3,45$, or 78 rpm .

The amplifiers use six low-level modules and one lineamplifier module. Bias is stabilized over a wide temperature range by a germanium diode. The turntable preamplifiers conform to RIAA specifications and contain a feedback design which yields stable performance.

1.4 EQUIPMENT SUPPLIED.

Table 1-1 lists the equipment supplied with the 808A-1 Console.

TABLE 1-1
EQUIPMENT SUPPLIED

EQUIPMENT	COLLINS PART NUMBER
808A-1 Console and power cable, 115 volts, 60 cps	$522-2609-00$

1.5 EQUIPMENT REQUIRED BUT NOT SUPPLIED.

Table 1-2 lists the equipment required to place the 808A-1 Console in operation but not supplied with the 808A-1.

TABLE 1-2 EQUIPMENT REQUIRED BUT NOT SUPPLIED

EQUIPMENT

Power source, 120 volts, 60 cps
External signal inputs
Public address system and/or program line
Microphone, low impedance, with XLR-3-12C connector

Headphones, with phone plug

1.6 CHARACTERISTICS.

Balanced inputs

Mike 1 . 50 ohms, -55 dbm nominal.
Mike 2 . 50 ohms, 55 dbm nominal.
NEMO (600 ohms $40-\mathrm{db}$ pad) 15 dbm nominal.
Duty cycle. Continuous.
Phono equalization Per RIAA standards.

NOTE

The equalization limits are met only for the cartridges supplied with this unit from the factory. Equalization of other cartridges is available upon special request.

Noise.	-110 dbm equivalent input noise level or less (with
	-55 dbm microphone input and +18 dbm line output,
the signal-to-noise ratio is at least 55 db).	

Monitoring Devices

Program level
VU meter.
Aural program and cue Headphone jack.

```
Operational aids . . . . . . . . . . . . . . . . . . VU meter lights, motor on lights.
Transistor classification . . . . . . . . . . . . . . Commerical.
Connections
    Program line . . . . . . . . . . . . . . . . . . Binding terminal post.
    Public address system feed . . . . . . . . . . . . Headphone type jack.
    External inputs . . . . . . . . . . . . . . . . . . Female Cannon (XLR-3-31) jack.
    A-c input . . . . . . . . . . . . . . . . . . . . Hubble twist lock.
    2 program monitors . . . . . . . . . . . . . . . Headphone jack.
    Ground . . . . . . . . . . . . . . . . . . . . . Binding post.
Fusing . . . . . . . . . . . . . . . . . . . . A-c line.
```

Phono pickup and cartridge Supplied with modified Rek-O-Kut S320 pickup arm,
and GE cartridge 4GD-01S-02S with sapphire stylus.

1.7 SEMICONDUCTOR AND FUSE COMPLEMENT.

Table 1-3 lists the fuse and semiconductors used in the 808A-1.

TABLE 1-3. SEMICONDUCTOR AND FUSE COMPLEMENT

SYMBOL	TYPE	FUNCTION
A1Q1	2N1175A	Microphone preamplifier
A2Q1	2N1175A	Pickup preamplifier and equalizer
A3Q1	2N1175A	Pickup preamplifier and equalizer
A4Q1	2N1175A	Booster amplifier
A5Q1	2N1175A	Monitor amplifier
A6Q1	2N1175A	Monitor output amplifier
A7Q1	2N1175A	Program amplifier booster
A7Q2	2N1175A	Program amplifier driver
A7Q3	2N651	Program output amplifier
A7Q4	2N651	Program output amplifier
CR101	1N1488	Power rectifier
CR102	1N1488	Power rectifier
F1	MDL 1-1/2 (for 120-volt operation)	A-c power fuse

Figure 2-1. 808A-1 Console, Outline and Mounting Dimensions

SECTION II
 UNSTALLATION

2.1 UNPACKING.

Remove all packing material, and carefully lift the 808A-1 Console from its shipping container. Check the equipment against the packing slip and list of equipment supplied (table $1-1$ of this book). Inspect the unit for physical damage. If damage exists, save the packing materials and packing containers to substantiate the claim with the transportation agency.

2.2 INSTALLATION.

2.2.1 LEGS.

Refer to figure 2-1. Hold the four legs in the stowed position. Pull out and turn the leg retaining arm 90 degrees clockwise. The retaining arm is located under the control panel. Remove the four legs from their position under the control panel. Turn the retaining arm 90 degrees counterclockwise (to the original vertical position) and allow it to retract. Set the leg locking levers (located adjacent to the leg mounting holes) to the unlocked position. Insert the legs fully into the holes provided at each corner of the 808A-1 and swing the locking levers a little past the position where the first resistance is felt. The legs are thus locked in place. If the surface upon which the 808A-1 Console is set is not level, one or more legs may be released, extended to the surface, and relocked.

2.2.2 CABLES AND LINES.

See figure 2-2. Connect a ground wire to the rear binding post marked PROGRAM GROUND. Comnect the program lines (or telephone lines) to the binding posts marked PROGRAM LINE. Connect the microphone(s) and NEMO cables to the jacks marked MIKE 1, MIKE 2, and NEMO. Plug the public address amplifier cable to the PA OUTPUT. Plug the headphones
to be used for monitoring into the MONITOR PHONES jack. Check the fuse, F1. Connect the 60 -cps power cable between the POWER AC jack and the 120 -volt, $60-\mathrm{cps}$ power source.

2.3 ADJUSTING THE STYLUS PRESSURE.

For proper record wear, stylus life and sound reproduction, the amount of weight placed by the stylus on the record is important. Since the amount of weight is a function of the cartridge used, the pressure on the stylus must be individually adjusted after cartridge installation. The Micropoise arm takes the guesswork out of stylus pressure adjustment with the easily adjustable counterweight and the new Micropoise balance control with reference line centered through the knob's letter "O" in REK-O-KUT.
a. Rotate the Micropoise balance control knob fully counterclockwise before adjusting the counterweight.
b. Rotate the counterweight either forward or backward until the arm floats just above the record surface. A movement of the counterweight away from the cartridge will tend to raise the arm while a movement of the counterweight toward the cartridge will tend to lower the arm.

NOTE

If proper balance cannot be achieved by movement of the counterweight, the brass weight located in the cartridge shell should be removed. A heavy cartridge will not balance until the brass weight is removed. Remove snap cover at top of cartridge shell and remove brass weight. Replace snap cover.

Figure 2-2. 808A-1 Console, Rear View
c. The Micropoise balance control has been designed so that the first rotation of the knob clockwise produces no change in weight on the stylus (0 grams of stylus pressure). Each succeeding full rotation provides one gram of weight on the stylus. Proper stylus pressure, as recommended by the cartridge manufacturer, can be achieved by rotating the

Micropoise balance control the proper number of turns clockwise.

2.4 CARTRIDGE AND STYLI REPLACEMENT.

Table 2-1 identifies the cartridges and styli supplied with the 808A-1.

TABLE 2-1. REPLACEMENT STYLI AND CARTRIDGE

ITEM	GENERAL ELECTRIC PART NUMBER	COLLINS PART NUMBER
0.001 Stylus	$4 \mathrm{G}-01 \mathrm{~S}$	$097-3851-00$
0.0025 Stylus Cartridge (includes both styli)$\quad 4 \mathrm{G}-02 \mathrm{~S}$	$097-3852-00$	

SECTION III OPRRATION

3.1 GENERAL.

Refer to paragraph 2.2, installation, for leg attachment and line connections.

3.2 CONTROLS AND INDICATORS.

See figure 3-1. The external input selector is used to select MIKE 1, MIKE 2, or NEMO. Separate motor power switches are used to control the turntable motors. The CUE switches are ganged to the counterclockwise position of the FADE and MICROPHONE controls. Three separate fade controls are provided for the input sources. The MASTER GAIN controls the over-all output signal level. The PUBLIC ADDRESS GAIN control allows independent adjustment of the public address or other remote feeds. The MONITOR LEVEL controls the headphone signal level. Separate indicator lights show which turntable motor is energized. The VU meter is illuminated when the $808 \mathrm{~A}-1$ power is turned on. Turntable shifting levers are provided to select turntable speeds of $33-1 / 3,45$, or 78 rpm .

3.3 PREBROADCAST ADJUSTMENTS.

a. Set the FADE and MICROPHONE contiols on the control panel fully counterclockwise.
b. Set the MONITOR LEVEL on the rear apron fully clockwise.
c. Turn on the a-c power by turning the PUBLIC ADDRESS GAIN control on the control panel slightly clockwise.
d. Select a disc recording and place it on TURNTABLE ONE.
e. Select the turntable speed compatible with the recording by engaging the TURNTABLE ONE speedselecting lever in the proper slot.
f. Set the stylus needle of the tone arm on the leadin groove of the recording.
g. Start TURNTABLE ONE by moving the motor control switch to ON position.
h. Set the MASTER GAIN control on the control panel to 26.
i. Adjust the TURNTABLE ONE FADE to obtain 0 vu peaks indicated on the VU meter.
j. Adjust the MONITOR LEVEL control on the rear apron to obtain a comfortable listening level on the headset.
k. Adjust the PUBLIC ADDRESS GAIN control to obtain a usable public address volume level without causing acoustical feedback when microphone input is used.

Figure 3-1. 808A-1 Console, Operating Controls and Indicators

Figure 4-1. 808A-1 Console, Block Diagram

SECTION IV
 PRINCIPLES OF OPERATION

4.1 GENERAL.

The 808A-1 Console uses semiconductors throughout the unit; no vacuum tubes are used. The 808A-1 has seven amplifier modules and one power supply module. Figure 4-1 is a block diagram of the 808A-1 Console.

4.2 NETWORK DESCRIPTION.

Input signal from the NEMO jack is coupled through a $40-\mathrm{db}$ pad to input selector S 4 . The balanced microphone inputs are also coupled to input selector $S 4$. The selected input is coupled to A1T1 of the microphone preamplifier. The signal through A1T1 undergoes a voltage step-up of approximately 2.8 to 1 due to the 8 -to- 1 impedance transformation of A1T1. The signal from the output of A1T1 produces signal voltage across A1R1; this signal is applied to the base of transistor AlQ1 via capacitor AlC1. A1R2 and A1R3 form a voltage divider which, with A1R5 and A1R6, establishes the operating bias for the base of A1Q1. Degenerative feedback is provided by the unbypassed emitter resistor A1R5. A1R4 is the collector load resistor across which the output voltage is developed. The output voltage of A 1 Q 1 is coupled through A1C3 to the FADE control, R1A and R1B. The same signal voltage is coupled through limiting resistor R21 to CUE switch S1-1.

The operation of equalized preamplifiers A2 and A3 is similar except that the input signals for the equalized amplifiers are derived from the turntable tone arms. The signals from the tone arms are coupled through the frequency compensating networks composed of A2R7, A2C4, and A2R8, and A3R7, A3C4, and A3R8 to the respective bases of A2Q1 and A3Q1. Degenerative feedback is not provided in A2 or A3.

The output signals from the three preamplifiers are coupled through their respective FADE controls to a common line which is connected to the input of booster amplifier A4. The FADE controls are connected in a manner such that there is very little interaction between controls.

Booster amplifier A4 is essentially the same as microphone preamplifier A1 except the input signal is coupled directly from the common FADE controls output line. The output of booster amplifier A4 is coupled to the MASTER GAIN control, R4A and R4B.

From the MASTER GAIN control the signal is coupled through A7C1 to the base of A7Q1 in program amplifier A7. Bias for A7Q1 is provided by voltage divider A7R1 and A7R3 and emitter resistor A7R2. Emitter resistor A7R2 is bypassed by A7C2. Degenerative feedback in
this stage is provided by connecting A7R3 to the collector side of the collector load, A7R4. The output of A7Q1 is coupled through A7C3 to the gain adjusting potentiometer, A7R6, in the base network of A7Q2.

Bias for the base of A7Q2 is provided by the voltage divider A7R8, A7R6 and A7R7, and by A7CR1 and emitter resistor A7R9. A7R9 and A7CR1 are bypassed by A7C4. Degenerative feedback is provided by connecting A7R8 from the collector of A7Q2 to the base of the same transistor. The output signal from A7Q2 is coupled to the push-pull amplifier via A7T1. The primary winding 1 to 2 of A7T1 is swamped by A7R10 to broaden the frequency response.

The voltage divider composed of A7R33 and the temperature-sensitive diode, A7CR1, controls the bias on A7Q2 and push-pull amplifier A7Q3-A7Q4 to prevent gain variation due to temperature changes. A7Q3 and A7Q4 are driven in push-pull via A7T1. The pushpull stage is balanced by adjusting emitter potentiometer A7R12 to obtain minimum even order distortion. A7R11 and A7R13 help provide bias for A7Q3 and $A 7 Q 4$. The collectors of $A 7 Q 3$ and $A 7 Q 4$ are connected to output transformer A7T2. A7R14 is used to swamp the primary of A7T2.
The secondary winding 4 to 5 of A7T2 is used to provide negative feedback to the base of A7Q1 via the frequency compensating network composed of A7R16 through A7R21, A7R34, and A7C7 through A7C11. A voltage divider composed of A7R22 and A7R23 is directly across the winding 4 to 5 of A7T2. From the junction of the voltage dividing resistors A7R22 and A7R23 a sample signal voltage is coupled to the PUBLIC ADDRESS GAIN control, R6, and through the interlocking cue switches and R22 to monitor amplifier A5. The variable tap on potentiometer R6 is coupled through isolating resistor R17 to the PA OUTPUT jack on the rear of the 808A-1 Console. The other secondary winding 6 to 7 of A7T2 is coupled through a $3-\mathrm{db}$ pad to the program line terminals of the 808A-1. The same secondary winding is coupled through an $8-\mathrm{db}$ pad to the VU meter. A7C6, A7R5, and A7C5 are decoupling components.
When one of the cue switches is closed, the output of the associated preamplifier is coupled to the monitor amplifier A5 and the cue interlock switch is opened disconnecting the program monitor feeds. The signal is applied to the base of A5Q1 vi: A5C1. Bias for A5Q1 is provided by the voltage divider A5R2 and A5R3 and emitter resistors A5R5 and A5R6. Emitter A5R6 is bypassed by A5C2. A5R5 is not bypassed and thus this stage is provided with degenerative feedback. A5R4 is the collector load resistor, and A5C3 is the collector blocking capacitor through which cue signal is coupled to the MONITOR LEVEL control, R5A and

SECTION IV

Principles of Operation
R5B. The signal from the MONITOR LEVEL control is coupled through A6C1 to the base of A6Q1 in the monitor output module.

The monitor output module, A6, is identical to the monitor amplifier module, A5. The output signal from A6 is coupled to the MONITOR PHONES jack, J6, on the rear panel of the $808 \mathrm{~A}-1$ Console. When a FADE control is moved to the CUE position, the input of the monitor channel is disconnected from the program line and connected to the CUE bus.

The main a-c power switch, 57 , is ganged to the PUBLIC ADDRESS GAIN control. The turntable switches are $S 5$ and $S 6$ on the schematic diagram, figure 7-1.

The power supply uses a full-wave rectifier. The input a-c is fed to the parallel primary windings of T101 (for 220-volt amplifier operation the windings are connected in series).

CAUTION

For 220 -volt operation, 220 -volt turntable motors or a suitable step-down transformer for turntable power must be used.

CR101 and CR102 rectify the secondary current. R101, R102, L101, C101, C102, and C103 form the filter network. R103 is the bleeder resistor.

SECTION V MAINTENANCE

5.1 GENERAL.

Transistors are very reliable devices and normally do not require replacement unless they have been subjected to overvoltage, abnormal heat or cold, or excessive shock. For this reason transistors should not be removed and checked for routine preventive maintenance or trouble shooting.

5.2 DEFINITIONS.

5.2.1 RIAA.

RIAA is the lateral modulation of a disc playback response characteristic (expressed as a velocity ratio) with a constant voltage applied to the recording bus. Reference to RETMA Standard REC-146, dated September 1955, or NAB Handbook.

5.2.2 NOISE.

Output noise is measured with the input and output terminated in 600 ohms, microphone input level of -45 dbm , master gain control set at 26 , and the microphone gain control set to obtain +18 dbm output at the program line output terminals. Signal-to-noise ratio $(\mathrm{S} / \mathrm{N})$ is referenced to +18 dbm output.

5.2 .30 DBM .

0 dbm equals one milliwatt across 600 hms .

5.3 TEST EQUIPMENT REQUIRED.

Table 5-1 lists the test equipments or equivalents required to perform the tests outlined in this section.

TABLE 5-1. TEST EQUIPMENT REQUIRED

EQUIPMENT	DESCRIPTION
Distortion and noise meter	General Radio, 1932A
Audio oscillator	Hewlett-Packard, 200CD
Attenuator	Daven, T693R; input type 6813, output type 6853
Attenuator	Daven, HA 740B; input type 7333, output type 7381
A-c vtvm	Hewlett-Packard, 400D
Oscilloscope	Heathkit, O-1
Volt-ohm-milliammeter	Triplett, 630
Simulated playback cartridge (low impedance broadcast type)	One $150-\mathrm{mh}$ toroid, Collins part number 240-0276-00; one $100-\mathrm{mh}$ toroid, Collins part number 240-2074-00; one 422-ohm, one-percent resistor; all in series
Headphones	High impedance
Test record	Clarkston 2001S, RIAA frequency response
Microphone	Low impedance
Load resistors	600 ohms for program line 10,000 ohms for PA OUTPUT 10,000 ohms for MONITOR PHONES output

5.4 CONTROL SETTINGS.

Unless otherwise specified, the controls should be set as follows:

MICROPHONE FADE counterclockwise, out of CUE detent.
TURNTABLE ONE FADE . . counterclockwise, out of CUE detent.
\section*{TURNTABLE TWO FADE. . counterclockwise, out of CUE detent.}
MASTER GAIN. 26.
PUBLIC ADDRESS GAIN . . counterclockwise, a-c on.

MIKE 1-NEMO-MIKE 2. . . MIKE 1.

5.5 TESTS.

5.5.1 D-C MEASUREMENTS.

The voltage limits given in the following tests are typical values obtained when the $808 \mathrm{~A}-1$ Console is operating with an output of +8 dbm and the PROGRAM LINE is terminated in a 600 -ohm nonreactive load. Measure the d-c voltage between terminal E104 (see figure $5-1$) and $E 3$. It should be 18.5 volts ± 10 percent. Measure the d-c voltage between terminal E101 (see figure 5-1) and E3. It should be 14.5 volts ± 10 percent.

5.5.2 AMPLIFIER TEST AND ADJUSTMENTS.

5.5.2.1 TEST SETUP. Connect the audio oscillator through the Daven balanced attenuator to the MIKE 1 input on the rear apron of the 808A-1. Connect the distortion and noise meter to the PROGRAM LINE terminals on the rear apron of the 808A-1. Set the controls as outlined in paragraph 5.4.
5.5.2.2 NOLSE LEVEL. Perform the procedures of paragraph 5.5.2.1.
a. Connect a jumper across the VU meter terminals. (The bottom cover of the 808A-1 Console must be removed to jumper the VU meter.)
b. Set the frequency of the audio oscillator to 1000 cps.
c. Set the audio oscillator output and attenuator level to obtain -45 dbm input to the 808A-1.
d. Adjust the MICROPHONE gain control of the $808 \mathrm{~A}-1$ to obtain +18 dbm output as indicated on the distortion and noise meter, and calibrate the noise and distortion analyzer for a noise check.
e. Disconnect the audio oscillator from the MIKE 1 input, and connect the 600 -ohm load to the MIKE 1 input.
f. Measure the output level using the distortion and noise meter. The output level should be at least 55 db below output reference level (+18 dbm).

Figure 5-1. Test and Adjustment Points
g. Repeat the above procedure with the audio oscillator connected to the MIKE 2 input on the rear apron of the 808A-1.
h. Set the audio oscillator output level to -15 dbm , and repeat the above procedure with the audio oscillator connected to the NEMO input on the rear apron of the $808 \mathrm{~A}-1$.
5.5.2.3 FREQUENCY RESPONSE. Perform the procedures of paragraph 5.5.2.1.
a. Connect a jumper across the VU meter terminals.
b. Maintain an audio input level of -55 dbm throughout the test.
c. Adjust the MICROPHONE gain control to obtain $\cdot \mathrm{r} 8$ dbm output at 1000 cps. Do not move the MICROPHONE gain control during the test.
d. The output measured on the distortion and noise meter should be $+8 \pm 2 \mathrm{dbm}$ from 50 cps to 15 kc .
e. Repeat the above test using the NEMO input. The audio oscillator should be maintained at a level of -15 dbm input to the NEMO connector.
5.5.2.4 DISTORTION. Perform the procedures of paragraph 5.5.2.1.
a. Connect a jumper across the VU meter terminals.
b. Set the frequency of the audio oscillator to 1000 cps.
c. Set the audio oscillator output level to obtain -55 dbm input to the $808 \mathrm{~A}-1$.
d. Adjust the MICROPHONE gain control to obtain +8 dbm output as indicated on the distortion and noise meter.
e. Measure the distortion using the distortion and noise meter.
f. If the harmonic distortion (not hum) is greater than 2 percent, adjust potentiometer R12 (see figure 5-1) to obtain minimum distortion as indicated on the noise and distortion meter.
5.5.2.5 HEADPHONE AND PA OUTPUT. Perform the procedures of paragraph 5.5.2.1.
a. Set the audio oscillator frequency to 1000 cps .
b. Set the output level of the audio oscillator to obtain -55 dbm input to the $808 \mathrm{~A}-1$.
c. Adjust the MICROPHONE gain control to obtain 0 vu as indicated on the VU meter of the 808A-1.
d. Set the MONITOR LEVEL on the rear apron of the 808A-1 fully clockwise.
e. Measure the a-c voltage across the MONITOR PHONES jacks (J 6 and J7). It should be 1.5 volts minimum across a 10 -kilohm load.
f. Move the MICROPHONE gain control to CUE, and measure the a-c voltage across the MONITOR PHONES jacks. The voltage should be 1.5 volts minimum across a 10 -kilohm load.
g. Turn the PUBLIC ADDRESS GAIN control fully clockwise and measure the voltage across the PA OUTPUT jack. It shouldbe 5 millivolts minimum across a 10 -kilohm load.
5.5.2.6 TURNTABLE RESPONSE. Set the controls of the 808A-1 Console as outlined in paragraph 5.4.
a. Using the test record on TURNTABLE ONE, adjust the TURNTABLE ONE FADE control to set the output level to 0 vu as indicated on the VU meter. The level should be set with the $500-\mathrm{cps}$ tone of the test record.
b. Allow the test record to play while observing the indications on the VU meter. With each tone the VU meter should indicate $0 \pm 3 \mathrm{vu}$.
c. Repeat the above test on TURNTABLE TWO.
5.5.2.7 TURNTABLE DISTORTION. Set the controls as outlined in paragraph 5.4.
a. Disconnect the cartridge head from the tone arm of TURNTABLE ONE.
b. Connect the audio oscillator and unbalanced attenuator through the low impedance cartridge simulator to the tone arm input.
c. Set the audio oscillator frequency to 1000 cps .
d. Set the MASTER GAIN control to 26 .
e. Set the TURNTABLE ONE FADE control to 32.
f. Adjust the audio oscillator output level to obtain 0 vu indicated on the VU meter.
g. Measure the distortion using the noise and distortion meter. The distortion should be less than 2 percent.
h. Repeat the above procedure for TURNTABLE TWO.
5.5.2.8 TURNTABLE CUE. Set the controls as outlined in paragraph 5.4.
a. Place records on both turntables.
b. Set the MASTER GAIN control to 26.
c. Adjust the TURNTABLE ONE FADE to obtain 0 vu indicated on the VU meter of the 808A-1.
d. Connect a headset to the MONITOR PHONES jack, and adjust the MONITOR LEVEL to a comfortable listening level.
e. Move the TURNTABLE ONE FADE control to CUE. There should be no change in the headphone level.
f. Repeat the above procedure for TURNTABLE TWO.
g. With both turntables operating, move one FADE control to CUE while the other FADE control is adjusted for an output indication of 0 vu . Reverse the FADE settings. Observe that the headset responds to the turntable with the FADE control in the CUE position and that the turntable with the FADE control out of CUE position feeds the program line. Observe that when all FADE controls are out of CUE position, the headphones respond to the program line signal.

5.6 SERVICING TRANSISTOR CIRCUITS.

5.6.1 GENERAL.

The servicing procedures and test equipments that have been used in the past with other types of electronic gear, for the most part, may be used with transistor circuits. The cases where special precautions must be used are listed below. If the equipment under test contains transistors, even though they may not be in the circuits under test, the precautions should be observed because of the possibility of accidentally contacting a transistor circuit.

5.6.2 TEST EQUIPMENT.

The damage to transistors by test equipment is usually the result of accidentally applying too much current or voltage to the transistor elements. The following are common sources of damage from test equipment.
5.6.2.1 TRANSFORMERLESS POWER SUPPLIES. One source of such current is from the power line when test gear with transformerless power supply is used. This type of test gear can be used by employing an isolation transformer in the power line.
5.6.2.2 LINE FILTER. It is still possible to damage transistors from line current, even though the test gear has a power transformer in the power supply, if the test gear is equipped with a line filter. This filter may act like a voltage divider and apply 55

SECTION V

Maintenance
volts a-c to the transistor. To eliminate trouble from this situation, connect a ground wire from the chassis of the test gear to the chassis of the equipment under test before any other connections are made.
5.6.2.3 LOW-SENSITIVITY MULTIMETERS. Another source of transistor damage is a multimeter that requires excessive current for adequate indications. Multimeters that have sensitivities of less than 5000 ohms per volt should not be used. A multimeter with lower sensitivity will draw too much current through many types of transistors and damage them. Use of 20,000-ohm-per-volt meters or vacuum-tube voltmeters is recommended. Check the ohmmeter circuits (even those in vtvm's) on all scales with an external, low-resistance milliammeter in series with the ohmmeter leads. If the ohmmeter draws more than one milliampere on any range, this range cannot be used safely on small transistors.
5.6.2.4 POWER SUPPLY. Always use fresh batteries of the proper value for the equipment under test in test power supplies. Never use battery eliminators because the regulation of these devices is poor at the current values drawn by transistor circuits. Be certain about identification of polarity before attaching the battery to the equipment under test; polarity reversal may damage the transistor.

5.6.3 ELECTRIC SOLDERING IRONS.

The following are possible sources of transistor damage from soldering irons.
5.6.3.1 LEAKAGE CURRENT. Electric soldering irons may damage transistors through leakage current. To check a soldering iron for leakage current, connect an a-c voltmeter between the tip of the iron and a ground connection (water pipe or line ground), allow the iron to heat up, then check for a-c voltage with the meter. Reverse the plug in the a-c receptacle and again check for voltage. If there is any indication on the meter, isolate the iron from the line with a transformer. The iron may be used without the isolation transformer if the iron is plugged in and brought to temperature and then unplugged for the soldering operation. It is also possible to use a ground wire between the tip of the iron and the chassis of the equipment being repaired to prevent damage from leakage current.
5.6.3.2 IRON SIZE. Light-duty soldering irons of 20- to 25-watt capacity are adequate for transistor work and should be used. If it is necessary to use a heavier duty iron, wrap a piece of number 10 copper wire around the tip of the iron and make it extend beyond the tip of the iron. Tin the end of the piece of copper wire anduse it as the soldering tin.

5.6.4 SERVICING PRACTICES.

5.6.4.1 HEAT-SINK WHEN SOLDERING. When installing or removing a soldered-in transistor, grasp
the lead to which heat is being applied, between the solder joint and the transistor, with long-nosed pliers to bleed off some of the heat that conducts into the transistor from the soldering iron. Make sure the wires that are being soldered to transistor terminals are properly pretinned so that the connection can be made quickly. Excessive heat will permanently damage a transistor.
5.6.4.2 REMOVAL OF TRANSISTORS FROM OPERATING CIRCUITS. Never remove or replace a plug-in transistor when the supply voltage is turned on. Transients thus produced may damage the transistor or others remaining in the circuit. If a transistor is to be evaluated in an external test circuit, be sure that no more voltage is applied to the transistor than is normally used in the circuit from which it came.
5.6.4.3 PLUG-IN TRANSISTORS. When servicing equipment that uses plug-in transistors, it is good practice to remove the transistors from their sockets and reinsert them to break down any film of corrosion or dirt that may have formed.
5.6.4.4 RESISTANCE MEASUREMENTS IN TRANSISTOR CIRCUITS. When measuring resistances of circuits containing transistors or semiconductor diodes, remember that these components are polarity and voltage sensitive. Any capacitors used in transistor circuits are usually of large values (especially in audio, servo, or power circuits) and it takes time to charge these capacitors when an ohmmeter is connected to a circuit in which they appear; thus, any reading obtained is subject to error if the capacitor is not allowed time to fully charge. In some cases, it may be best to isolate the components in question and individually measure them.
5.6.4.5 POWER TRANSISTOR HEAT SINKS. In some cases, power transistors are mounted on heat sinks that are designed to carry heat away from them, and in some power circuits, the transistor must also be insulated from ground. This insulating is done by means of insulating washers made of fiber and mica. When replacing transistors of this nature, be sure that the insulating washers are replaced in proper order. Before installing the mica washers, treat them with a film of silicone fluid, Collins part number 005-0273-00, or equivalent. This treatment helps in the transfer of heat. After the transistor is mounted and before making any connections to it, check from the case to ground with an ohmmeter to see that the insulation is effective.
5.6.4.6 TEST PRODS. Test prods should be clean and sharp. Because many of the resistors used in transistorized equipments are of low values, when checking resistance values any additional resistance produced by a dirty test prod will make a good resistor appear to be out of tolerance. In miniaturized equipment the clearance between socket terminals, wires, and other components is usually very small. Because of this, it is easy to cause accidental short circuits with a test produsing a long, exposed needle in the end.

Short circuits can be very destructive to transistors, therefore it is a good practice to cover all of the exposed tip of the test prod, except about $1 / 8$ inch, with plastic tape or other insulation.

5.6.5 TROUBLE SHOOTLNG.

The usual trouble-shooting practices apply to transistors. Be sure the test equipment and tools meet the requirements outlined in the above paragraphs. It is recommended that transistor testers be used to evaluate the transistor.
5.6.5.1 OHMMETER TEST OF TRANSISTORS. If a transistor tester is not available, a good ohmmeter may be used for testing. Be sure the ohmmeter meets the requirements as set forth in the paragraph on test equipment, above. To check a PNP transistor, connect the positive lead of the ohmmeter to the base and the negative lead to the emitter. (The red lead is not necessarily the positive lead on all ohmmeters.) Generally, a resistance reading of 50,000 ohms or more should be obtained. Connect the negative lead to the collector; again a reading of 50,000 ohms or more should be obtained. Reconnect the circuit with the negative lead of the ohmmeter to the base. With the positive lead connected to the emitter, a value of resistance in the order of 500 ohms or less should be obtained. Likewise, with the positive lead connected to the collector, a value of 500 ohms or less should be obtained. Similar tests made on an NPN transistor produce results as follows: With the negative ohmmeter lead comnected to the base, the value of resistance between the base and the emitter and between the base and the collector should be high. With the positive lead of the ohmmeter connected to the base, the value of resistance between the base and the emitter and between the base and collector should be low. If the readings do not check out as indicated, the transistor probably is defective and should be replaced.

CAUTION

If a defective transistor is found, make sure that the circuit is in good operating order before inserting the replacement transistor. If a short circuit exists in the circuit, plugging in another transistor will most likely result in another burned out transistor. Do not depend upon fuses to protect transistors.

Make sure that the bias resistors in series with the various transistor elements are correct. The transistor is very sensitive to improper bias voltages; therefore, a short or open circuit in the bias resistors may damage the transistor. For this reason, do not trouble-shoot by shorting various points in the circuit to ground andlistening for clicks.

5.7 TURNTABLE MAINTENANCE AND ADJUSTMENTS.

CAUTION

The turntables are equipped with double ball thrust bearings. One is attached to each platter shaft and one is loose in each shaft well. Use caution when inverting the $808 \mathrm{~A}-1$ Console to ensure that the loose ball bearings do not fall out and become lost.

5.7.1 ADJUSTMENTS.

Each of the slots for the speed-shifting levers is equipped with an adjustable stop. The stops should be adjusted to allow the least amount of pressure to be applied to the idler wheel and yet maintain sufficient driving power. Too much pressure will cause incorrect speed, vibration, and idler wear. If sufficient driving power cannot be obtained with the shifting lever stop adjustments, loosen the motor hanger bolts, move the motor to a position where adequate driving power can be obtained, and tighten the hanger bolts.

5.7.2 LUBRICATION.

The motors are self-lubricating types and require no periodic lubrication. Use light machine oil on other moving parts of the turntables and semisolid lubricant on the idler shaft. Do not overlubricate.

5.7.3 CLEANING.

Clean the idler and inside rim of the turntable platter with methyl alcohol. During the first few weeks of operation, the idler and inside rim of the platter should be cleaned weekly. If the idler or rim becomes contaminated with oil, clean it with detergent and hot water.

5.8 STYLUS REMOVAL AND INSTALLATION.

Press the stylus quick-change knob on the top of the pickup and turn it 90 degrees. Grasp the slip-in stylus with the thumb and forefinger and slide the stylus out of the holder.

To replace the stylus, press the stylus quick-change knob on the top of the pickup and turn it 90 degrees so that the holder channel is accessible from both ends. Grasp the stylus with the thumb and forefinger and slide the stylus into the holder. Turn the change knob on the top of the pickup and allow the spring to return the stylus holder into place between the pickup magnets.

NOTE

The end of the stylus-holder channel which has the hole (visible only when the stylus is removed) is the end into which the 1 -mil stylus should be placed.

5.9 STYIUS HOLDER REMOVAL AND INSTALLATION.

Pull off the quick-change knob on the top of the pickup. Compress the spring slightly and remove the C -washer. Remove the spring and flat washer and slide the stylus holder out of the cartridge.

To replace the stylus holder, insert the stylus-holder shaft into the cartridge as far as it will go. Place the flat washer and spring over the stylus-holder shaft, compress the spring, and insert the C -washer into the slot provided. Install the quick-change knob on the top of the pickup. Be sure that the key in the knob matches the slot in the stylus-holder shaft.

ITEM	DESCRIPTION	COLLINS PART NUMBER
	808A－1 CONSOLE	522－2609－00
B1	MOTOR： $115 \mathrm{v}, 60$ cycle， 4 pole，no load input power． 31 watt；General Industries part no． D－10－CCW	$20 \cdot 01256-80$
B2	MOTOR：same as B1	
DS1	INDIC ATOR LIGHT ASSEMBLY：neon lamp，red lens．panel mtg w／built－in resistor； 0.1 w at $115 \mathrm{v}, 0.2 \mathrm{w}$ at 230 v ；Industrial Devices．Inc．． part no．1010C1	262－1167－00
DS2	INDICATOR LIGHT ASSEMBLY：same as DS1	262－1167－00
DS3	LAMP．INC ANDESCENT：pilot light w／miniature bayonet base； 6.3 v． $0.150 \mathrm{amp}, \mathrm{T}-3-1 / 4 \mathrm{bulb}$ ； General Electric part no． 47	262－3240－00
E1	POST，BINDING：w／banana plug jack，red nylon insulation； 1000 vdcw； 30 amp current； $3 / 4 \mathrm{in}$ ． lg；Superior Electric Co．part no．DFN 30 RC	372－1062－00
E2	POST．BINDING：same as EI	372－1062－00
E3	POST，BINDING：same as E1	372－1002－00
E4	TERMINAL，STUD：single ended w／metal base． 1／4 in，hex head，5／8 in．Ig；Armel Electronics part no．RTMT－12M	306－0976－00
E5 thru	TERMINAL．STUD：same as E4	306－097G－00
E10		
E11	TERMINAL，LUG：phosphor bronze，for 16 screw； Shakeproof locking hole；Shakeproof，Inc．，part no．2104－06－02－2520	304－0318－00
E12	TERMINAL．LUG：some as Ell	304－0318－00
E13	TERMINAL，LUG：same as Eli	304－0318－00
E14	TERMINAL，LUG：phosphor bronze．for 44 screw； Shakeproof locking hole；Shakeproof，Inc．，part no．2104－04－01－2520	304－0317－00
E15	TERMINAL，LUG：same as E14	304－0317－00
E16	TERMINAL．LUG：same as Ei4	304－0317－00
E17	TERMINAL，LUG：same as EII	304－0318－00
E18	TERMINAL，LUG：same as Eli	304－0317－00
E19	TERMINAL，LUG：same as Ell	304－0318－00
E20	TERMINAL．LUG：same as Eil	304－0318－00
F1	FUSE，CARTRIDGE：brass，nickel plated，glass enclosed，time lag， $1.5 \mathrm{amp}, 125 \mathrm{v} \mathrm{max} ; 0.250 \mathrm{in}$ ． dia by $1-1 / 4 \mathrm{in}$ ． 1 F	264－0007－00
Ht	CLAMP．CABLE－NYLON：stralght flextble nylon clamp designed to surround cable or group of hook－up wires；Thomas \＆Betts Co．part no．TY－15	435－1031－00
H2	CLAMP，LOOP－NYLON：strajght flexible nylon clamp designed to surround group of hook－up wires； Thomas \＆Betts Co．part no．TY－5	435－1026－00
J1	CONNECTOR，RECEPTACLE，ELECTRICAL： 3 contact，socket Insert， 15 amp；Cannon Electric Co． part no．XLR－3－31	369－0011－00
J2	CONNECTOR，RECEPTACLE，ELECTRICAL： same as Jl	369－0011－00
J3	CONNECTOR，RECEPTACLE，ELECTRICAL： same as J 1	369－0011－00
J 4	CONNECTOR，RECEPTACLE，ELECTRICAL： 2 wire polarlzed twist－lock．flush base， 10 amp， 250 v ； 15 amp． $125 \mathrm{v} ; 15 / 16 \mathrm{in}$ ．w by $1-5 / 8 \mathrm{in}$ ． dia overall	549－1011－002
J5	JACK，TELEPHONE：midget phone jack，for 2 conductor plug w／1／4 in．dia barrel；15／16 in． dia by 1－5／16 in．Ig overall；Switcheraft part no． 2J－1182	358－1080－00
J6	JACK，TELEPHONE：same as J5	358－1080－00
J7	JACK，TELEPHONE：same as J5	358－1080－00
M1	METER，AUDIO LEVEL：VU meter for u／in equipments exposed to environments；background color，white	456－0056－00
MP1	SHOCKMOUNT：Q．R．K．Electronic Products part no．127－12A	200－1091－00
M P2	PLATTER AND BEARING： 12 in ．（matched pair only）；Q．R．K．Electronic Products part no．127－10	235．0380
MP3	mLER：Q．R．K．Electrontc Products jart no 112－1	
MP4	DLER SHAFT ASSEMBLY： 12 in．ungrooved shaft；Q．R．K．Electronic Products part no． 112－15B	

ITEM	DESCRIPTION	COLLINS PART NUMBER
M P5	IDLER THRUST WASHER：Q．R．K．Electronic Products pari no．128－08	
MP6	mLER RETAINING RING： 12 in ．ungrooved shaft； Q．R．K．Electronic Products part no．127－07	
MP7	COMPRESSION SPRING：shift mechanism；Q．R．K． Electronic Products part no．127－22	
MP8	EXPANSION SPRING： 12 in．turntable；Q．R．K． Electronic Products part no．127－05	
MP9	SHIFT ARM：Q．R．K．Electronic Products	
MP10	SHIFT－ARM．KNOB：Q．R．K．Electronle Products	
MPII	IDLER ADJUSTING SCREW；Q．Ω ．K．Electronic Products part no．112－33	
MP12	PULLEY，MOTOR：Q．R．K．Electronics Products	5.04
01	KNOB ASSEMBLY：e／o black phenolic shell， aluminum skirt， 1.562 in ．dia \＆black plastic set－ screw knols w／melal insert；1－8／16 in．dia by 49／64 in．w overall	549－1023－003
02	KNOB ASSEMBLY：same as O1	549－1023－003
thru 06		
07	KNOB：phenolle，round，push－on type w／white filled index line \＆spun satin chrome top insert	281－0415－00
P1	CONNECTOR，RECEPTACLE，ELECTRICAL： 2 female contacts； $10 \mathrm{amp}, 250 \mathrm{v} ; 15 \mathrm{amp}, 125 \mathrm{v}$	368－0010－00
PU1	ARM，SOUND REPRODUCER：tone arm；$+15^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ ；Rek－O－Kut Corp．Model S－320（Mod）	270－1589－00
PU2	ARM．SOUND REPRODUCER：same as PU1	270－1589－00
R1	RESISTOR，VARIABLE，COMPOSITION：dual resistor；sec．A， 10,000 ohms ± 20 ． $0.1 / 4 \mathrm{w}$ ；section B． 5000 ohms $\pm 20 \%, 1 / 4 \mathrm{w}$ ；includes S 1	376－2167－00
R2	RESISTOR．VARIABLE，COMPOSITION：same as R1，includes S2	376－2167－00
R3	RESISTOR，VARIABLE，COMPOSITION：same as R1，includes S3	376－2167－00
R4	RESISTOR．VARIABLE，COMPOSITION：dual section；sec．$A, 10,000$ ohms ± 20 身， $1 / 4 \mathrm{w}$ ；sec． B ， 5000 ohms $\pm 20 \% 1 / 4 \mathrm{w}$	376－2168－00
R5	RESISTOR，VARIABLE，COMPOSITION：same as R4	376－2168－00
R6	RESISTOR，VARIABLE，COMPOSITION： 5000 ohms 1／4 w；includes 57	376－7207－00
R7	RESISTOR，FIXED．COMPOSITION： 270 ohms ± 10 \％． $1 / 2 \mathrm{w}$	745－1328－00
R8	RESISTOR，FLXED，COMPOSITION： 22 ohms $\pm 10_{6}^{\circ}, 1 / 2 \mathrm{w}$	745－1282－00
R9	RESISTOR FIXED．COMPOSITION： 10 ohms $\pm 10 \% .1 / 2 \mathrm{w}$	745－1268－00
R10	NOT USED	
R11	NOT USED	
R12	NOT USED	
R13	NOT USED	
R14	NOT USED	
R15	RESISTOR，FIXED，COMPOSITION：same as R7	745－1328－00
R16	RESISTOR，FIXED．COM POSITION：same as RA	745－1282－00
R17	RESISTOR，FLXED，COMPOSITION： 6800 ohms $\pm 10 \% 1 / 2 \mathrm{w}$	745－1387－00
R18	RESISTOR，FIXED，COMPOSITION： 1500 ohms上 10% ， $1 / 2$ w	745－1359－00
R19	RESISTOR，FIXED，COMPOSITION：same as R18	745－1359－00
R20	RESISTOR，FIXED，COMPOSITION： 4300 ohms $\pm 5 \%, 1 / 2 \mathrm{w}$	745－1378－00
R21	RESISTOR，FIXED，COM POSITION： 22,000 ohms $\pm 10_{0}^{\circ} .1 / 2 \mathrm{w}$	745－1408－00
R22	RESISTOR，FIXED，COMPOSITION： 3300 ohms 510% ， $1 / 2 \mathrm{w}$	745－1373－00
R23	NOT USED	
R24	NOT USED	
R25	RESISTOR，FIXED，COMPOSITION： 10,000 ohms t 10 品， $1 / 2 \mathrm{w}$	745－1394－00
R26	RESISTOR，FIXED．COMPOSITION：same as R9	745－1268－00
R27	RESISTOR，FLXED，COM POSITION：same 33 R9	745－1268－00
S1	P／OR1	
S2	P／OR2	
S3	P／OR3	
S4	SWITCH，ROTARY： 2 circull， 2 pole． 3 position． 1 section； 2 moving， 8 fixed contacts	259－1508－00
S5	SWITCH，LEVER：one locking position \＆neutral． spst normally open；form＂A＂type contact，lever to lock w／contacts in closed position	375－0198－00

ITEM	DESCRIPTION	COLLINS PART NUMBER
S6	SWITCH, LEVER: same as S5	375-0198-00
S7	P/OR6	
TBI	NOT USED	
TB2	TERMINAL BOARD: phenolic w/ 4 solder-lug terminals; $11 / 16 \mathrm{in}$. w by $1-1 / 2 \mathrm{in}$. Ig, Cinch Mrg. Corp. part no. 1532-A	306-9032-00
TT1	TURNTABLE: 31 free watts w/ no load applied to motor; 125 v ac, 60 cps ; Q. R. K. Electronic Products part no. TT200 (Mod)	270-1585-00
TT2	TURNTADLE: same as TT1	270-1585-00
XDS1	NOT USED	
XDS2	NOT USED	
XDS3	LAMPHOLDER: minlature bayonet base, clip bracket pilot light socket; 1-1/8 in. w by 7/8 in. h; Drake Mfg. Co. part no. 204AH	262-1240-00
XF1	FUSEHOLDER: extractor post fuse holder w/ test probe hole in knob; $15 \mathrm{amp}, 250 \mathrm{v}$; for u; w 1-1/4 In. by $1 / 4$ in. fuses: Bussman Fuse Co. part no. HKP-HJR	265-1019-00
POWER SUPPLY		549-1042-00
C101	CAPACITOR. FDEDD. ELECTROLYTIC: 500 of $-15 \%+100 \%, 25 \mathrm{vdcw}$; Cornell-Dubiller part no. ERH 10156 V	183-1208-00
C102	CAPACITOR, FDEED, ELECTROLYTIC: 500 uf 	183-1788-00
C103	CAPACITOR. FIXED. ELECTROLYTIC: same as C102	183-1788-00
CR101	SEMICONDUCTOR DEVICE. DIODE: silicon. hermetically seal ed; 200 v peak inverse voltage; Motorola part no. 1 N1488	353-1657-00
CR102	SEMICONDUCTOR DEVICE, DIODE: same as Cri01	353-1657-00
E101	TERMINAL, STUD; single ended w/metal base; 1/4 in. hexhead. $5 / 8 \mathrm{in}$. 1 g ; Armel Electrontes part no. RTMT 12M	306-0970-00
E102	TERMINAL, STUD: same as El01	306-0976-00
thru		
E107		
E108	NOT USED	
E109	TERMINAL, STUD; same as E101	306-0876-00
thru E115		
L101	REACTOR: 2.0 hys, $35 \mathrm{ma} \mathrm{de}, 80$ to 105 ohms reslstance, 500 v rms; $100 / 120 \mathrm{cps}$; Chi. Std. Trans. Corp. part no 24022	668-0197-00
R101	RESISTOR, FLXED, COMPOSITION: 10 ohms $\pm 10 \%$, 2 w	745-5568-00
R102	RESISTOR, FDXED, COMPOSITION: 680 ohms t10\%, $1 / 2 \mathrm{w}$	745-1345-00
R103	RESISTOR, FIXED, COMPOSITION: 15.000 ohms $\pm 10 \%$. $1 / 2$ w	745-1401-00
T101	TRANSFORMER, POWER, STEP-DOWN: prl \#1, $6.3 \mathrm{v}, 150 \mathrm{ma} ; 50 / 60 \mathrm{cps}$; continuous duty cycle; Chi. Std. Trans. part no. 31000	662-0042-00
TB101	TERMINAL BOARD: phenolic, 5 terminals, $7 / 8$ in. w by 2-1/4 In. ig; Howard Jones part no. 353-11-05-001	367-0120-00
	Preamplifier subassembly, al	549-0618-003
AlCl_{1}	CAPACITOR, FIXED, ELECTROLYTIC: 30 U -10% to $+100 \%$, 10 vdcw	183-1377-00
A1C2	CAPACITOR. FLXED, ELECTROLYTIC: 100 uf -10% to $+100 \%, 6$ vdew; Sprague Electric part no. 30D135A1	183-1168-00
AlC_{3}	CAPACITOR, FIXED. ELECTROLYTIC: 50 uI -10% to $+100 \%, 15$ vdew; Spraguo Electric part no. 30D170A1	183-1157-00
A1Q1	TRANSISTOR: hermetically sealed. PNP germanium alloy; General Electric part no. 2Ni175A	352-0315-00
Alni	RESISTOR, FIXED, FILM: 1030 ohms $\pm 1 \% .1 / 4 \mathrm{w}$	705-7110-00
A1R2	RESISTOR, FISED, FILM: 17.800 ohms $\pm 1 \% 1 / 4 \mathrm{w}$	705-7156-00
A1R3	RESISTOR, FIXED, FILM: 6190 ohms $\pm 1 \%, 1 / 4 \mathrm{w}$	705-7134-00
A1R4	FESISTOR, FIXED, FILM: 10,000 ohms $\pm 1 \%$. $1 / 4$ w	705-7144-00
A1R5	RESISTOR, FIXED, FILM: 61.8 ohms $\pm 1 \%, 1 / 4 \mathrm{w}$	705-7038-00
AIR6	RESISTOR, FIKED, FILM: 7500 ohms $+1 \%$, 1/4 w	705-7138-00
A1T1	TRANSFORMER, AUDIO FREQUENCY: pri 100 ohms, CT; see. 800 ohms; $50 / 15,000 \mathrm{cps}$; continuous duty cycle; Chi. Std. Trans. part no. 30878	667-0050-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
	EQUALIZED PREAMPLIFIER, A2 AND A3	549-1025-003
C1	CAPACITOR. FIXED, ELECTROLYTIC: 30 u -10% to $+100 \% .10 \mathrm{vdcw}$	183-1377-00
C2	CAPACITOR, FIXED, ELECTROLYTIC: 100 uf -10% to $+100 \%, 6 \mathrm{vdcw}$; Sprague Electric part no. 30D135A1	183-1168-00
C3	CAPACITOR, FIXED, ELECTROLYTIC: 50 uf $\mathbf{- 1 0 \%}$ to +100 cis. 15 vdew; Sprague Electric part no. 30D170A1	183-1157-00
C4	CAPACITOR, FLXED, ELECTROLYTIC: 3.3 u $410 \% .15 \mathrm{vdcw}$; Sprague Electric part no. 150D335X9015A2	184-7718-00
Q1	TRANSISTOR: hermetically sealed: PNP german nium; General Electric part no. 2N1175A	352-0315-00
R1	RESISTOR. FIXED. FILM: 1960 ohms $\pm 1 \%$, $1 / 4 \mathrm{w}$	705-7110-00
R2	RESISTOR. FIEED, FILM: 17.800 ohms $\pm 1 \%$ \% $1 / 4 \mathrm{w}$	705-7156-00
R3	RESISTOR. FIXED. FILM 6190 ohins $\pm 1 \% .1 / 4 \mathrm{w}$	705-7134-00
R4	RESISTOR, FIXED, FILM: 10,000 ohms $\pm 1 \%, 1 / 4 \mathrm{w}$	704-7144-00
R5	RESISTOR, FIXED, FILM: 61.9 ohms $\pm 1{ }^{\text {\% }}$, $1 / 4 \mathrm{w}$	705-7038-00
R6	RESISTOR, FLXED, FILM: 7500 ohms $\pm 1 \%$ \% $1 / 4 \mathrm{w}$	705-7138-00
R7	RESISTOR, FLXED, FILM; 3830 ohms $\leq 1 \% .1 / 8 \mathrm{w}$	705-6624-00
R8	RESISTOR, FLXED. FILM: 110 ohms 1 \%, 1/8 w	705-6458-00
	PREAMPLIFIER SUBASSEMBLY. A4, A5, AND A6	549-0619-003
CI	CAPACITOR, FIXED. ELECTROLYTIC: 30 uf -10% to $+100 \%$. 10 vdew	183-1377-00
C2	CAPACITOR, FEXED. ELECTROLYTIC: 100 uf -10% to $+100 \%$. 6 vdew; Sprague Electric part no.	$\begin{gathered} 189-1969000 \\ 1: 65 \end{gathered}$
C3	CAPACITOR, FIXED, ELECTROLYTIC: 50 ur -10% to $+100 \%$ \% 15 vdcw ; Spraguc Electric part no. 30DI70A1	183-1157-00
Q1	TRANSISTOR: hermetically seated: PNP germanium; General Electric Co. part no. 2N1175A	352-0315-00
R1	RESISTOR, FIXED, FILM: 1960 ohms $\mathrm{t} 1 \%$, $1 / 4 \mathrm{w}$	705-7110-00
R2	RESISTOR, FEXED, FILM: 17.800 ohms $\pm 1 \% .1 / 4 \mathrm{w}$	705-7156-00
R3	RESISTOR, FIXED. FILM: 6190 ohms 51% \% $1 / 4 \mathrm{w}$	705-7134-00
R4	RESISTOR, FIXED, FILM: 10.000 ohms ± 1 \% $1 / 4 \mathrm{w}$	705-7144-00
R5	RESISTOR, FIXED, FILM: 61.9 ohms $\pm 1 \%$ \% $1 / 4 \mathrm{w}$	705-7038-00
R6	RESISTOR, FIXED. FILM: 7500 ohms $\pm 1 \%, 1 / 4 \mathrm{w}$	705-7138-00
	AMPLIFIER. A7	549-0625-005
A7C1	CAPACITOR, FIXED, ELECTROLYTIC: 50 uf -10% to $+100 \%$. 15 vdew; Sprague Electric part no. 30D170A1	183-1157-00
A7C2	CAPACITOR, FIXED, ELECTROLYTIC: 300 uf -10% to $+100 \%$, 3 vdcw; Sprague Electric part no. 30D118A1	183-1191-00
A7C3	CAPACITOR, FIXED. ELECTROLYTIC: same as A7C1	183-1157-00
A7C4	CAPACITOR, FIXED. ELECTROLYTIC: same as A7C2	183-1191-00
A7C5	CAPACITOR. FIXED. ELECTROLYTIC: 50 uf -10\% to $+100 \%$, 25 vdew: Sprague Electric part no. 30D186a!	183-1158-00
A7C6	CAPACITOR, FIXED, ELECTROLYTIC: 500 uf $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ oper. temp; 15 vdew	183-1303-00
A7C7	CAPACITOR. FIXED, MICA: 2200 uuf $\pm 5 \%$. 500 vdew; Electro Motive part no. DM20F222	012-3339-00
A7C8 thru	CAPACITOR. FIXED, MICA: same as A7C7	912-3330-00
A7C10		
A7C11	CAPACITOR, FIXED, PAPER: 0.10 uf $\pm 20 \%$. 200 vdcw	931-5942-00
A7CR1	SEMICONDUCTOR DEVICE. DIODE: germanium, hermetically sealed; RCA part no. IN2326	353-2038-00
A7Q1	TRANSISTOR: hermetically sealed; PNP germanlum. General Electrlc part no. 2N1175A	352-0315-00
A7Q2	TRANSISTOR: same as A7Q1	352-0315-00
A7Q3	TRANSISTOR: bermelically sealed; PNP germanium, Motorola, Inc. part no. 2N651	352-0194-00
A7Q4	TRANSISTOR: same as A7Q3	352-0194-00
A7R1	RESISTOR, FIXED, COMPOSITION: 10,000 ohms $+10 \%$, $1 / 2$ w	745-1394-00
A7R2	RESISTOR. FIXED, FILM: 3160 ohms $+1 \%$, $1 / 4 \mathrm{w}$	705-7120-00
A7R3	RESISTOR. FIXED. COMPOSITION: 22,000 ohms $\pm 10 \%$. $1 / 2$ w	745-1408-00
A7R4	RESISTOR, FIXED, COMPOSITION: same as A7R1	745-1394-00

808A-1 Console

ITEM	DESCRIPTION	COLLINS PART NUMBER
A7R23	RESISTOR, FIXED. COMPOSITION: 100 ohms	745-1310-00
	± 10 \% ${ }^{\text {cose }} 1 / 2 \mathrm{w}$	
A7R29	RESISTOR. FIXED. COMPOSITION: 47 ohms $\pm 10^{\circ} \mathrm{c}$, $1 / 2 \mathrm{w}$	745-1296-00
A7R25	RESISTOR, FIXED, COMPOSITION: same as A 284	745-1296-00
thru		
A7R27		
A7R28	$\left\{\begin{array}{l}\text { RESISTOR, FIXED, COMPOSITION: } 1500 \text { ohms } \\ +10^{m}, 1 / 2 \mathrm{w}\end{array}\right.$	745-135y-00
A7R29	RESISTOR. FIXED, COMPOSITION: 3900 ohms $\angle 10 \%, 1 / 2 \mathrm{w}$	745-1377-00
A7R30	RESISTOR, FIXED, COMPOSITION 560 ohms $100^{\circ} \mathrm{C}, 1 / 2 \mathrm{w}$	745-1342-00
A7R31	RESISTOR, FIXED. COMPOSITION: same as A7R30	745-1342-00
A7R32	NOT USED	
A7R33	RESISTOR, FIXED. COMPOSITION: 8200 ohms $\pm 10^{\mathrm{r}}, 1 / 2 \mathrm{w}$	745-1391-00
A7R34	RESISTOR, FIXED. COMPOSITION: 18 ohms $\pm 10 \%$. $1 / 2 w$	745-1279-00
A7T1	TRANSFORMER. AUDIO FREQUENCY: pri 8000 ohms; sec. 300 ohms; 50 to $15,000 \mathrm{cps}$; continuous duty cycle; Chi. Std. Trans. part no. 30658	667-0051-00
A7T2	TRANSFORMER, AUDIO FREQUENCY: pri 2000 ohms CT; sec. 11.150 ohms; sec. "2, 600 ohms; 50 to 15.000 cps, cuntinuous duty cycle; Chi. Std. Trans, part no 30659	667-0052-00

Figure 6-1. 808A-1 Console, Top View with Component Identification

Figure 6-2. $808 \mathrm{~A}-1$ Console, Top View with Turntables Removed for Component Identification

Figure 6-4. 808A-1 Console, Rear View with Component Identification

Figure 6-5. 808A-1 Console, Bottom View with Component Identification

Figure 6-6. 808A-1 Console, Bottom View, Amplifier Boards with Component Identification
f.g arnuo
$\square 549-1006-603$ $\frac{\text { Rothr }}{5+9-1014-002}$
$\square\left[\begin{array}{l}\text { Prased shafi coler } \\ \hline 553-4461-003\end{array}\right.$

Hencervar otoon dua. 553 -57/7-802

$$
\begin{array}{r}
\text { Plember feg y forsog } \\
015,0000
\end{array}
$$

$$
\lg 0549-10,3-60
$$

DATE: 8-27-63
Page 1 of 6

EQUIPMENT TYPE: 808A-1 CONSOLE
SUBJECT: ELIMINATION OF OSCILLATIONS THAT OCCUR UNDER ABNORMAL OPERATING CONDITIONS IN SOME AMPLIFIERS

The modification in this bulletin is to eliminate oscillations that occur in some amplifiers under abnormal operating conditions in which the fader and master gain controls simultaneously are turned to maximum. Most amplifiers have not had, nor will they ever have these oscillations. This modification is directed to installations which have experienced these oscillations, evidenced by an excessive meter reading with no audio input or an audible motorboating souna.

This modification will be factory installed in 808A-1 consoles with MCN above 153. The estimated time required to perform this modification is 45 minutes.

MODIFICATION PROCEDURE:

1. Turn unit on back side, and remove legs.
2. Set unit on front edge. Be careful that turntable platens do not fall out of their bearings or front edge become scratched.
3. Remove bottom cover by removing 17 screws retaining it.
4. Locate and drill 5/32-inch (0.156) holes in rear panel as shown in figure 1.
5. Mount terminal strip TB4 (306-9033-00), using 6-32 screw (343-0168-00), no. 6 lock washer (310-0282-00), and 6-32 nut (313-0002-00) in newly arilled hole nearest outside edge of panel.
6. Install capacitor mounting bracket (139-0090-00), using 6-32 screw (343-0168-00) and self locking nut (333-0368-00). Insert 500-uf capacitor C3 (183-1788-00) in mounting bracket and connect leads to terminal 1 of TB4 and ground terminal of J5. Connect positive (+) lead to $J 5$ and negative (-) lead to terminal 1 . See figure 3 for TB4 terminal numbers.
7. Install 220-ohm resistor R10 (745-1324-00) between terminals 1 and 3 of TB4.
8. Cut and remove the no. 26 AWG yellow wire connected between the equalized preamplifier subassembly A3 terminal 7 and the booster amplifier subassembly A4 terminal 7. (Refer to figures 2 and 3.)
9. Add 16 inches of no. 26 yellow wire (422-0798-00) from terminal 3 of TB4 to power supply terminal E101.
10. Add 3.5 feet of no. 26 yellow wire (422-0798-00) from terminal 1 of TB4 to the equalized preamplifier subassembly A3 terminal 7. Route wire along main cable and cable from which wire was removed. Tie newly added wires to cable.
11. Reassemble unit and return to operation.

PARTS REQUIRED:

Qty	Description	Collins Part Number	Price
1	Resistor, 220 ohm $\pm 10 \%, 1 / 2$ watt fixed composition R10	745-1324-00	\$. 17
1	Capacitor, 500 uf $-10+100 \%$, 25 wvdc, fixed electrolytic	183-1788-00	2.59
1	Terminal strip, 3 solder lugs, Cinch Mfg. Co., Chicago, Ill. Vendor P / N 1520-A,	306-9033-00	. 10
1	Nut, plain hex no. 6-32	313-0002-00	. 21
1	Washer, no. 6 lock	310-0282-00	. 14
2	Screw, machine no. 6-32 x 5/16	343-0168-00	. 29
1	Bracket, capacitor mounting 1 to 1-1/16 diameter, Prestole Corp., Toledo, Ohio, Vendor P/N comm	139-0090-00	. 06
1	Nut, self locking, 6-32 UNC	333-0368-00	. 36
5 ft	Wire, no. 26 AWG yellow Teflon insulated	422-0798-00	.04/ft

The above parts should be available through local sources; if not, they may be obtained from Collins Radio Company, Service Parts Department, Cedar Rapids, Iowa at the prices indicated. All orders should specify the Collins part number of the components required and make reference to 808A Service Bulletin No. 1. The prices indicated are subject to change without notice.

Figure 1. Partial View of Rear Panel of 808A-1 Console

Figure 2. Partial Pictorial View of 808A-1 Console - Before Modification

Figure 3. Partial Pictorial View of 808A-1 Console- After Modification
Page 6 of $6 \quad$ Service Bulletin $1 \quad 808 \mathrm{~A}$

ORIGINAL

Figure 4. Schematic Diagram of Changes to $808 \mathrm{~A}-1$ Circuitry

Electrical Wire Code

EXAMPLES:

Note 1 - Extruded nylon over fiber glass braid.
Note 2 - Braided, lacquered nylon over fiber glass braid.
Note 3 - Extruded nylon over secondary vinyl over fiber glass over primary vinyl.
Note 4 - Lacquered extruded nylon over secondary vinyl over fiber glass over primary vinyl.

