INSTALLATION AND OPERATING INSTRUCTIONS FOR M-6034 TRANSISTOR PREAMPLIFIER

TECHNICAL DATA

GAIN:
FREQUENCY
RESPONSE:
HARMONIC DISTORTION:
$45 \mathrm{DB} \pm 1$ DB operated into a 600 ohm load.
$\pm 1 \mathrm{DB}, 30 \mathrm{cps}$ to $15,000 \mathrm{cps}$.

Under 0.5% from 50 cps to 15

KC at +5 DBM output.
Under 0.5% from 30 cps to 15
KC at -50 DBM output.
INTERMODULATION

NOISE LEVEL: -122 DBM equivalent input noise.

SOURCE IMPEDANCE: $30 / 50$ and $150 / 250$ ohms.

INPUT IMPEDANCE:	Input transformer unloaded, resulting in input impedance being substantially higher than source impedance.
OUTPUT LOAD	
IMPEDANCE:	600 ohms $\pm 10 \%$.
MAXIMUM INPUT LEVEL:	-40 DBM.
MAXIMUM OUTPUT	
LEVEL:	+5 DBM.
MAXIMUM OPERATING AMBIENT	
TEMPERATURE:	$55^{\circ} \mathrm{C} .\left(131^{\circ} \mathrm{F}.\right)$
MAXIMUM STORAGE AMBIENT	
TEMPERATURE:	$85^{\circ} \mathrm{C} .\left(185^{\circ} \mathrm{F}.\right)$
POWER REQUIRE-	
MENTS:	$-30 \mathrm{~V} . \mathrm{DC}$ at 15 ma with less than .1 MV ripple.
TRANSISTORS:	3-2N5087 1-40319
MOUNTING:	Requires. M-6039 mounting frame.
SIZE:	3-1/4" Wide $\times 6-3 / 8^{n}$ Long $\times 1^{n}$ Thick.
DESC	RIPTITON

The Gates M-6034 Transistor Preamplifier is a premium quality low noise unit for use in consoles, and is completely temperature compensated using the latest techniques. The amplifier has a gain of 45 DB with a maximum output is unbalanced and transformerless, which
is designed to operate into a 600 ohm variable attenua-. tor.

The input is balanced, and is connected for $150 / 250$ ohni source impedance at the factory but may be reconnected for $30 / 50$ ohms.

THEORY OF OPERATION

This amplifier is designed to provide a fixed gain of 45 DB . It is a four-stage amplifier and utilizes a transformerless output. It features negative feedback to reduce distortion to a very low level and minimizes specification changes with transistor changes.

Signal is applied to pins C and E and is fed through transformer, T1, to the base of Q1 (2N1307). Q1 is a low noise transistor operated at ideal collector current for minimum noise. It will be noted that the first stage is series fed through T 1 to provide the maximum input gain from T1. C1 and R1 are connected across the secondary of T 1 to stabilize the amplifier. The value of R 1 and Cl were picked to provide a roll off above the audio range to prevent amplification of very high frequency noise.

The signal is then direct coupled from the collector of Q1 to the base of Q2. Q2 is a very high gain stage because the emitter is completely by-passed. The signal is then coupled from the collector of Q 2 (thru C 8) to Q3. The collector of Q3 is direct coupled to the base of Q4. Q4 is an emitter follower. Emitter followers are very stable and are virtually distortionless. This also provides the low output impedance required to feed a 600 ohm fader. Feedback is applied from R17 through R13 and C9, R7 and C5 to the emitter resistor (R6) of the first stage. R13 and C9 provide a boost of 1 DB at 30 cps to make the response flat in the audio range.

MAINTENANCE

Transistor amplifiers are designed for a long troublefree life, however, dust and dirt can cause trouble. A monthly dusting with a soft brush should be adequate.

SHOULD TROUBLE OCCUR -

Step 1 - First check all DC voltages. The DC voltages determine the bias points of the transistors and any departure of 20% or more should be considered a defect. NOTE: Use of the resistance chart will help detect faulty components.

Step 2 - Before any signal measurements are made, replace any defective parts to make DC voltages correct.

Step 3 - After all DC voltages are correct, signal tests may be performed. The correct (RMS) voltages are shown on the schematic diagram. Voltages shown are for -40 DBM input @ 150 ohms not terminated.

DO NOT remove or insert transistors with the power ON.

REMEMBER - In this transistor circuitry B+is ground, therefore, capacitors have the positive side connected to ground.
NOT probe the printed board with the power ON with a metal screwdriver, etc., that could short out wiring.

Symbol No. Gates Stock No. Description

Cl	5080349000	$\text { Cap., } .0075 \text { uf, } 100 \mathrm{~V} .$
C2	5220178000	Cap., 25 uf, 6 V .
C3	5220160000	Cap., 100 uf, 3 V.
C4, C7, C8,		
C10	5220242000	Cap., 25 uf, 25 V
C5	5000759000	Cap. $100 \mathrm{PF}, 500 \mathrm{~V}$.
C6	5220187000	Cap., 200 uf, 6 V.
C9	5220158000	Сap., 50 uf, 3 V.
Q1, Q2,		
Q3	3800112000	Transistor 2N5087
Q4	3400035000	Res., 270 ohm, $1 / 2 \mathrm{~W} .5 \%$
R4	5480050000	Res., 20K ohm, $1 / 2 \mathrm{~W} ., 1 \%$
R3	5400062000	Res., 3600 ohm, 1/2W.,5\%
R5	5400066000	Res., $5100 \mathrm{ohm}, \mathrm{1/2} \mathrm{W.} ,\mathrm{5} \mathrm{\%}$
R6	5480049000	Res., 100 ohm, 1/2 W., 1\%
R7	5400038000	Res., 360 ohm, 1/2 W., 5\%
R8	5400077000	Res., 15K ohm, 1/2 W., 5\%
R9	5400068000	Res., 6200 ohm, 1/2 W., 5\%
R10	5400064000	Res., 4300 ohm, 1/2 W., 5\%
R11	5400081000	Res., 22 K ohm, $1 / 2 \mathrm{~W} ., 5 \%$
R12	5400062000	Res., 3600 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
R13	5400025000	Res., 100 ohm, 1/2 W., 5\%
R14	5400084000	Res., 30K ohm, 1/2 W., 5%
R15	5400048000	Res., 910 ohm, 1,2 W., 5%
R16	5400063000	Res., 3900 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
R17	5400036.000	Res., 300 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
R18	5400058000	Res., 2400 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
R2	5400076000	Res., 13K ohm, 1/2W., 5%
T1	4780285000	Transformer, Input
XQ4	4040198000	Transipad

