IMSTRUCTION cobk

INSTRUCTION BOOK
FOR
M-6035 CUE-INTERCOM AMPLIFIER
88. 108 MC

FRe日rise Ber Exiesinx

INSTALLATION AND OPERATING INSTRUCTION FOR M-6035 CUE-INTERCOM AMPLIFIER

GAIN:

FREQUENCY
RESPONSE:
HARMONIC
DISTORTION:

NOISE:
SOURCE
IMPEDANCE:
OUTPUT LOAD
IMPEDANCE:
.
MAXIMUM INPUT
LEVEL:
MAXMMM OUTPUT
LEVEL: +30 DBM .
MAXIMUM OPERA-
TING AMBIENT
TEMPERATURE: $\quad 55^{\circ} \mathrm{C}$ ($\left.131^{\circ} \mathrm{F}.\right)$
MAXIMUM STORAGE
AMBIENT
TEMPERATURE: $85^{\circ} \mathrm{C}$. ($185^{\circ} \mathrm{F}$.)
POWER REQUIRE-
MENTS:
-37 V. DC (unregulated) 10-75 ma.

TRANSISTORS:

SIZE:
1-2N214 2-2N1183
3-2N1414 1-2N5088
1-2N5087
3-1/4"Wide x 7-1/2"Long x ${ }^{1 "}$ Thick.

DESCRIPTION

The Gates M-6035 Transistor Cue-Intercom Ampli-- fier is designed to be used in transistor consoles for cueing and talkback purposes. The amplifier utilizes a gain control for adjusting to different input levels. The amplifier is designed to be fed from a 45 ohm source and to operate into a 45 ohm speaker or resistive load.

The amplifier is designed to be used with the M-6039 mounting frame, which carries a mating receptacle for the printed card type connection. The connections on the printed wiring board are gold flashed for positive connection with the gold contacts on the matirg receptacle.

The amplifier requires a -37 V . DC unregulated power source and requires from 10 ma . (at average power output) to a maximum of 75 ma . (at +28 DBM output).

THEORY OF OPERATION

For the purpose of explanation, the Cue-Intercom Amplifier can be considered to be made up of two distinct parts: The preamplifier, and the power amplifier.

THE PREAMPLIFIER

The two stage preamplifier is driven by an input transformer which is somewhat loaded by the input resistor. This resistor prevents excessive signals from being developed by the speaker at its resonance frequency, which would over-drive the input stage. Both stages are of the common emitter configuration, with direct coupling utilized between the stages. On the schematic, 8379345001 , it should be noted that Q1 is a NPN type transistor and has its emitter returned to B - for biasing purposes.
Biasing is accomplished by a combination of voltage divider and emitter resistance as with R1, R2 and R5. This method of biasing also insures a high degree of temperature stability. Signal degeneration is also for Q2 by R7.

The volume control, (located on the console) situated between the preamplifier and power amplifier, is connected in reverse, to maintain the high source impedance at all settings that the power amplifier requires.

THE POWER AMPLIFIER

The output stages of the power amplifier operate Class B, and are arranged in the circuit configuration known as "single ended push-pull", or "followed emitter follower". The upper and lower units are in series across the power supply, and the load is connected at their junction when the signal at the collector of Q4 goes negative Q6 and Q8 conduct, since they are all PNP types. When the signal goes positive Q5 and Q7 conduct since Q5 is a NPN type. Thus, the full signal appears at the junction point.

Note that Q 4 is the only stage in the power amplifier with this voltage gain. A high frequency transistor is used at this point to improve stability. Several feedback loops are employed in this circuit, including $\mathrm{R} 10, \mathrm{C} 7, \mathrm{C} 10$, and $\mathrm{C} 9, \mathrm{C} 7$ and C 10 provide high frequency stability, C12 supplies positive feedback from the output to the collector circuit of Q4 to increase the signal handling capability of this stage.

MAINTENANCE

PREVENTIVE MAINTENANCE

The M-6035 Cue-Intercom Amplifier is designed for long, trouble-free service. However, as with all high quality electronic equipment, a regular program of inspection should be followed.

It is recommended that when the amplifier is first received, part of the console, D.C. voltage be measured with the same voltmeter that will be used for maintenance and troubleshooting, and these

- readings be recorded on the amplifier schematic above the typical voltages shown.

SERVICING

When servicing the amplifier, the following points should be observed.

1. The condition of the output stage measuring the speaker bus voltage at the junction of R21 and the collector of Q8.
2. Circuit resistances should be measured only after removing the associated transistor or transistors, to prevent damage due to ohmmeter battery voltage.
3. DO NOT remove or insert transistors with the power ON.
4. DO NOT probe the printed board with a metal probe with the power ON .
5. Circuit voltages are reversed from standard vacuum tube practice, as is the polarity of all electrolytic capacitors.
6. The location of the positive end of each electrolytic capacitor is indicated by the white dot marked on the top of the circuit board.

PARTS LIST

Symbol No. Gates Stock No. Description
$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$,
$\mathrm{C4}, \mathrm{C} 9$
C 5
C 6

5220242000 Cap., 25 mfd, 25 V. 5060005000 Cap., $.1 \mathrm{mfd} ., 200 \mathrm{~V}$. 5220178000 Cap., 25 mfd , 6 V.

C7,

C12
C13
C14
Q1
Q6
Q2,
Q3. Q4, Q5
Q7, Q8
R1
R2, R3
R4
R5
R7,
R8
R9, R19, R20
R10, R14
R11
R12, R18
R13
R15
R16
R23
R2A
R21, R22

R25
${ }^{2}$
17

T1
XD1, XD2
$\mathrm{XQ1}, \mathrm{XQ} 2$,
XQ3, XQ4,
XQ5, XQG
XQ7, XQ8

Symbol No. Gates Stock No. Description
5160054000 Cap., 001 mfd., 1 KV, 10% 5220256000 Cap., $20 \mathrm{mfd} ., 50 \mathrm{~V}$.

5220246000 Cap., 100 mfd ., 25 V .
5060006000 Cap., $25 \mathrm{mfd} ., 200 \mathrm{~V}$.
5060004000 Cap., 05 mfd ., 200 V .
3800115000 Transistor, 2N5088
3800011000 Transistor, 2N214
3800112000 Transistor. 2N5087
3800014000 Transistor, 2N1414
3800012000 Transistor, 2N1183
5400081000 Res., 22 K ohm, $1 / 2$ W., 5%
5400071000 Res., 8200 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
5400076000 Res., 13 K ohm, $1 / 2$ W., 5%
5400075000 Res., 12 K ohm, $1 / 2$ W., 5%
5400057000 Res., 2200 ohm, $1 / 2 \mathrm{~W}$., 5%
5400036000 Res., 300 ohm, $1 / 2$ W. 5%
5400045000 Res., 680 ohm, $1 / 2 \mathrm{~W} ., 5 \%$
5400041000 Res., 470 ohm, $1 / 2 \mathrm{~W}$., 5%
5400073000 Res., 10 K ohm, $1 / 2 \mathrm{~W} ., 10 \%$
5400085000 Res., 33 K ohm, $1 / 2 \mathrm{~W}$., 5%
5400039000 Res., 390 ohm, $1 / 2$ W., 5%
5400098000 Res., 110 K ohm, $1 / 2$ W., 5%
5400049000 Res., 1 K ohm, 1/2W., 5%
5400070000 Res., 7500 ohm, 1/2W., 5%
5400017000 Res., 47 ohm, 1/2W. 5%
5400023000 Res., 82 ohm, $1 / 2$ W., 5% 5400005000 Res., $15 \mathrm{ohm}, 1 / 2 \mathrm{~W} ., 5 \%$
5400845000 Res., $6.8 \mathrm{ohm}, 1 / 2 \mathrm{~W} .5 \%$
5400025000 Res., 100 ohm, 1/2 W., 5%
$4780285^{\circ} 000$ Transformer, Input
4040227000 Dissipator

4040066000 Socket 4040149000 Socket

