```
    MODEL PCL-505
    (890-960 MHz)
    MONAURAL
        AURAL
STUDIO-TO-TRANSMITTER LINK
```

MOSELEY ASSOCIATES, INC. Santa Barbara Pesearch Park 111 Castilian Drive Goleta, California 93017

Revised
March 1978
(805) 968-9621

FINAL TEST DATA
MODEL PCL-505

Date	17 Aug. 1983
Order 去	3392
Technician	conrad

Customer	KHYX	
Tx Serial \#	39225	
Rx Serial \#	40699	
Frequency	950.125	MHz

Transmitter Meter Readings

- Program
- MPX Chan. 1 @ 26 kHz Chan. 2 @ 67 kHz
- AFC
, FRD PWR 6.0 Watts RFL PWR
$+\mathrm{VDC}$
- Reference Oscillator
H.E. Divider
- I.P.A. Drive
- Final Current 2 amp max
$\frac{0}{\frac{10}{15}}{ }^{15}$ b
dB top bottom bottom bottom top -0.5
bottom 0 12.5 bottom 12.5 14.5 bottom 14,5 13.0 bottom 13.0 20.5 bottom 19,0
-11.5 bottom 11,2
+VDC
Signal (no input)
Program @ $100 \% \mathrm{mod}$.
MPX 26 kHz
67 kHz
Level for 45 dB SNR:
RF P_{0} Levels
FMO
MULT-DRIV
FINAL AMP

12.5 bottom	
	1.8 bottom
	$0 \quad \mathrm{~dB}$
	10 bottom
	15.9
	-90

Receiver Signal Meter Calibration

Microvolts

5	$\frac{1.8}{1.9}$
10	$\frac{2.5}{7.0}$
20	$\frac{9.1}{11.0}$
100	$\underline{13.0}$
200	14.0
1,000	14.0

- Uilimate SNR: \qquad 74 dB with noise reduction circuit active
- SNR: $\frac{82}{\text { Level for } 60 \mathrm{~dB} \text { SNR: } \quad \text { with noise reduction }}$
- Squelch set between $15-20$ _ 20 VV
- These readings were noted during final electrical test of the equipment and are intended , for reference purposes. Readings may vary with component replacement or aging, adjustment, RF terminations, equipment installation, or path conditions.
\cdot
$\underset{\text { ph }}{\int \operatorname{Rev.~} 12 \text { May } 1983}$
\quad

MOSELEY ASSOCIATES, INC.
FINAL TEST DATA
MODEL PCL-505
Date \qquad Customer

\# KHYX
$\#-\frac{39226}{40700}$
$-949.875 \quad \mathrm{MHz}$

Transmitter Meter Readings

Program
MPX
MPX Chan. 1 @ 26 kHz Chan. 2 @ 67 kHz
AFC
FRD PWR 6 _
RFL PWR
〕
$\div \mathrm{VDC}$
Reference Oscillator
H.F. Divider
${ }^{-}$I. P.A. Drive
Final Current 2 amp max

0	$d B$ top bottom
10	
15	bottom
15	bottom
0	top 0
0.5	bottom 0
12.5	bottom12S
15.0	bottom s.0
13.0	bottom 13.0
19.0	bottom 16.9
8.5	bottom6.8

Power Supply to be set using a DVM

Transmitter	
Receiver	$\frac{12.5}{12.5}$ VDC
	$-12.5 D C$

PCL-505 System Performance

巨req. (Hz) Response Distortion (\%)

\cdots	30

${ }^{-1} \begin{array}{r}400 \\ 1,000\end{array}$
${ }_{-} \begin{array}{r}5,000 \\ 10,000\end{array}$
I 15,000
30
0

-.4 dB
-.2 dB
0
0
0
0
+.2
0

Svstem Noise

Receiver Meter Readings

+VDC		12.5 bottom
Signal (no input)		1.8 bottom
Program@ $100 \% \mathrm{mod}$.		$0 \quad \mathrm{~dB}$
MPX 26 kHz		10 bottom
67 kHz		13.1 bottom
Level for 45 dB SNR:		-88 dBm
RF $\mathrm{P}_{\mathrm{\rho}}$ Levels		
FMO		_ 15 MW min
MULT-DRIV	180	120 MW min
FINAL AMP	6.0	05 Wmin

Receiver Signal Meter Calibration

Microvolts

5	$\frac{1.8}{2.5}$
10	$\frac{6.5}{9.5}$
50	$\frac{11.1}{12.7}$
200	-14.0
500	-14.2
1,000	14.5

Ultimate SNR: \qquad 74 dB
SNR: \qquad dB with noise reduction circuit active
Level for 60 dB SNR \qquad dBm
Squelch set between 15-20_20_ $\mu \mathrm{V}$

. 1These readings were noted during final electrical test of the equipment and are intended for reference purposes. Readings may vary with component replacement or aging, adjustment, RF terminations, equipment installation, or path conditions.
Page

1. INTRODUCTION 1
2. SPECIFICATIONS 2
2.1 System 2
2.2 Transmitter 3
2.3 Receiver 4
3. UNPACKING 5
4. INSTALLATION 5
5. OPERATION 15
6. CIRCUIT DESCRIPTION 15
6.1 Transmitter 15
6.1.1 Input Interface 15
6.1.2 Modulated Oscillator 20
6.1.3 Frequency Multiplier 22
6.1.4 Power Amplifier 22
6.1.5 (This section deleted 2/76) 25
6.1.6 High-Frequency Buffer and Divider 25
6.1.7 AFC 27
6.1.8 Power Supply 27
6.2 Receiver 31
6.2.1 Input Bandpass Filter 31
6.2.2 RF Preamplifier 31
6.2.3 Balanced Mixer 31
6.2.4 Local Oscillator 36
6.2.5 74 - 10.7 MHz Converter 36
6.2.6 FM Demodulator and Meter Amplifier 36
6.2.7 Metering and Muting 36
6.2.8 Program Amplifier 41
7. OPERATIONAL SUGGESTIONS 44
7.1 Recommended Standards and Data 44
7.2 Program Levels 45
7.3 Subcarrier Levels 46
7.4 Proof of Performance - PCL-505 47
7.5 Proof of Performance - PCL-505/C 50
7.6 Cross Talk into Subcarrier 52
7.7 Composite Receiver to Exciter Interface 52
7.8 Remote Control of the STL Transmitter 53
7.9 Adjustment Guides 53
Field Changes 61
Final Test Data 62

MODELS PCL-505 AND PCL-505/C
AURAL STUDIO-TO-TRANSMITTER LINKS

1. INTRODUCTION

The Models PCL-505 and PCL-505/C Studio-to-Transmitter Links (STL) were designed to convey high-quality aural program material from a studio site to a transmitter site. Control and secondary programming subcarriers may also be simultaneously carried by the PCL-505. The wide-band "composite" version of this equipment, designated the PCL-505/C, allows the transmission of the complete composite FM stereo broadcast signal over only one link. Two PCL-505 units can be operated in the dual-link configuration to carry Left and Right audio channels for stereo operation. This equipment may also be used in intercity relay service. The environment in which this equipment must operate and the operators using it have both been carefully considered. Attention to design details and quality in construction distinguish the PCL-505.

```
PCL-505,PCL-505/C
    -1-
(Rev. 10/75)
```


2. SPECIFICATIONS

2.1 System

Monaural (PCL-505):

Audio Response
Audio Distortion
Signal-to-Noise Ratio
Emission
$\pm 0.4 \mathrm{~dB}, 30 \mathrm{~Hz}$ to 15 kHz
Less than $0.4 \%, 30 \mathrm{~Hz}$ to 15 kHz
Better than 68 dB
ll0F3 (no subcarrier)
110F9 (26 kHz control subcarrier)
230 F 9 (67 kHz program subcarrier)
$\pm 0.2 \mathrm{~dB}, 30 \mathrm{~Hz}$ to 60 kHz
$\pm 0.5 \mathrm{~dB}, 30 \mathrm{~Hz}$ to 75 kHz
Less than $0.4 \%, 30 \mathrm{~Hz}$ to 60 kHz
Better than 65 dB

Better than 35 dB
(assuming stereo generator is better than 38 dB)

Better than 43 dB , linear and nonlinear combined

226F9 (no subcarrier)
270 F 9 (67 kHz program subcarrier)
340 F 9 (110 kHz control subcarrier)
490F9 (185 kHz program subcarrier)
148-174 MHz, $215-240 \mathrm{MHz}$,
$300-330 \mathrm{MHz}, 450-470 \mathrm{MHz}$,
$890-960 \mathrm{MHz}$
$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

PCL-606 and PCL-606/C

WHY STL?

Studio-transmitter link (STL) systems have traditionally offered broadcasters an alternative to leased telephone lines for conveying program information from the studios to a remote transmitter location. Telephone line charges have increased dramatically over the past few years, while line reliability and ultimate audio quality have either degraded or stayed the same. Studio-transmitter links offer the broadcaster complete control over program carriage with excellent reliability, two factors very important in today's broadcasting. Studio-transmitter links will also convey a program subcarrier, such as an SCA feed, as well as remote control information over the same economical link.

WHY PCL-606?

The PCL-606 and PCL-606/C Studio-Transmitter Links provide the broadcaster and industrial user alike with the highest quality program conveyance service currently available in equipment of this type. By the use of the latest technology available in today's market, significantly improved specifications and performance are achieved, even in areas overly onngested in STL service or in areas presenting high dersity RF environments. The PCL-606, designed for highest quality monaural audio service, may be used in a dual configuration for stereo service where composite stereo is not desired. The PCL-606/C, the composite stereo version, conveys the composite stereo waveform with virtually no degradation, neither adding to nor taking away from the stereo waveform.
The PCL-606 and PCL-606/C Transmitter and Receiver are of an all-new design, using techniques and components heretofore unavailable. Extensive field testing was done on this new STL system to ensure highest performance in hostile RF environments. Enclosed module construction is used to reduce the possibility of RFI as well as allow easy service access to each printed circuit board. All normal service tụning adjustments are easily, yet securely, accessible through the tops of the modules and unit top covers, while extensive internal metering capabilities are standard in both the Transmitter and Receiver.

PCL-606/C TRANSMITTER BLOCK MPAGRAM

PCL-606/C RECEIVER BLOCK DIAGRAM

FOR $940-960 \mathrm{MHz}$ COMPOSITE ONLY

TRANSMITTER

The PCL-606 and PCL-606/C Transmitters employ a direct FM modulation concept never used before in STL equipment. A synthesized reference oscillator is used for frequency and phase control of the direct FM oscillator. Transmitter FM modulated oscillator frequency conversion is done via a double balanced mixer, instead of employing the usual frequency multiplication of the modulated RF signal.
The transmitter includes a front panel meter with step-switch input selection to allow the metering of important parameters, such as RF forward output, RF reflected output, input levels, and AFC voltage. The metering system even includes built-in absolute value peak responding voltmeter capability, with internal LEDs to indicate DC polarity.

RECAMER

The PCL-606 and PCL-606/C Receiver designs incorporate several performance and user-controlled features never before seen in point-to-point audio distribution equipment of this type. A PIN diode attenuator circuit is supplied for user adjustment of
overall system signal to noise ratio. The PIN diode attenuator circuit reduces adjacent signal intermodulation products caused by input signal overloads.
The receiver IF bandwidth may be changed by the user to optimize the tradeoff between distortion and selectivity. All specifications shown are with the IF system in the "narrow" position, providing maximum selectivity.
The receiver demodulator is of an all-new design, offering extremely low distortion and noise characteristics. The demodulator is broadband and adjustment free, using digital pulse counting techniques for maximum fidelity.
The receiver includes a front panel meter with stepswitch input selection to allow the metering of several parameters, including audio output level, subcarrier level, and RF input level in microvolts. The metering system includes built-in absolute value peak responding voltmeter capability with polarity indication. The metering circuit output appears on a back panel connector for remote metering.
Built-in transfer circuitry is standard in the PCL-606 and PCL-606/C Receivers to allow automatic changeover to a standby receiver in the event of a detected malfunction.

PCL-606

$148-174 \mathrm{MHz}, 215-240 \mathrm{MHz}, 300-330 \mathrm{MHz}$ $450-470 \mathrm{MHz}, 890-960 \mathrm{MHz}$ Specify exact operating frequency

Monophonic audio: $\pm 0.25 \mathrm{~dB}$
or better 30 Hz to 15 kHz
0.20% or less 30 Hz to 15 Hz
(typically better than 0.1% at 1 kHz)

Not applicable
Not applicable
72 dB or better rtypically 75 dB)
below 100% modulation
$3.5^{\prime \prime}(8.9 \mathrm{~cm})$ high, $\quad 19^{\prime \prime}(48.3 \mathrm{~cm})$ wide,
$0^{\circ}-50^{\circ} \mathrm{C}$
:---

10 Watts maximum, 5 Watts minimum 15 Watts maximum. 10 Walls minimum

Type N Female, 50 ohm $\pm 40 \mathrm{kHz}$

Better than $0.00025 \% 0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$
More than 60 dB below carrier level
One Program and Iwo Subcarrier Channels
Monophonic: $+10 \mathrm{dBm}, 600$ ohm, balanced, floating, barrier strip screw input. Multiplex: $7.5 \vee$ peak-to-peak 4 K ohms unbalanced, type BNC female connectors (2), frequency range $22-85 \mathrm{kHz}$

THD \& IMD Dislortion: Narrow (Wide) I.F. Filter
 Stereo Separation
 Nonlinear Crosstalk, Subchannel to Main Channel: Narrow (Wide) to I.F. Filter Nonlinear Crosstalk, Main Channel to Subchannel: Narrow (Wide) I.F. Filter

 RF Power Oulput
SYSTEM

Frequency Range

Frequency Response

Signal-to-Noise Ratio
 Dimensions, Operating Temperature Range: Transmitter and Receiver
 TRANSMITTER

 $890-960 \mathrm{MHz}$ $148-470 \mathrm{MHz}$RF Output Connector Deviation for 100\% Modulation Frequency Stability Spurious and Harmonic Emission Modulation Capability

PCL-606/C

$748-174 \mathrm{MHz}, 215-240 \mathrm{MHz}, 300-330 \mathrm{MHz}$
$450-470 \mathrm{MHz}, 890-960 \mathrm{MHz}$
Specify exact operating frequency

Composite: $\pm 0.1 \mathrm{~dB}$ or better 30 Hz to 53 kHz , $\pm 0.3 \mathrm{~dB}$ or better 53 kHz to 73 kHz
0.3% (0.2%) or less 30 Hz to 53 kHz , iypically better than 0.1% (0.07%) at 1 kHz
48 dB or better, 50 Hz to 15 kHz
(typically 50 dB or better)
$50 \mathrm{~dB}(54 \mathrm{~dB})$ or better
$50 \mathrm{~dB}(54 \mathrm{~dB})$ or better
$72 d B$ or better (typically $75 d B$) below 100% modulation, demodulated, de-emphasized left or right

$$
\begin{array}{ll}
\hline 3.5^{\prime \prime}(8.9 \mathrm{~cm}) \text { high, } & 19^{\prime \prime \prime}(48.3 \mathrm{~cm}) \text { wide, } \\
0^{\circ}-50^{\circ} \mathrm{C} & 16^{\prime \prime}(40.6 \mathrm{~cm}) \text { deep }
\end{array}
$$

10 Watts maximum, 5 Watts minimum
15 Walts maximum. 10 Watts minimum
Type N Female, 50 ohm
$\pm 50 \mathrm{kHz}$
Better than $0.00025 \%, 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
More than 60 dB below carrier level
One Program and Two Subcarrier Channels
Composite: 3.5 V peak-to-peak, 6 K ohms unbalanced, type BNC female connector. Multiplex: 1.5 V peak-to-peak, 4 K ohms unbalanced, type BNC female connectors (2), frequency range $110-185 \mathrm{kHz}$
$.100,120 / 220 / 240$ VAE $\pm 10 \%, 50 / 60 \mathrm{~Hz}, 7 \theta$ Wates

Type N Female, 50 ohm
$150 \mu \mathrm{~V}$ or less 60 dB SNR required for left or right channel de-emphasized demodulated,
3 dB I.F. bandwidth $\pm 100 \mathrm{kHz}(\pm 150 \mathrm{kHz})$ 60 dB I.f. bandwidth $\pm 450 \mathrm{kHz}(\pm 850 \mathrm{kHz})$ 80 dB I.f. bandwidth $\pm 1 \mathrm{MHz}$ ($\pm 2 \mathrm{MHz}$)
Composite: 3.5 V peak-to-peak, 100 ohm , unbalanced, type BNC female connector. Multiplex: 1.5 V peak-to-peak, 100 ohms unbalanced, type BNC female connectors (2)
$100 / 120 / 220 / 240$ VAC $\pm 70 \%, 50 / 60 \mathrm{~Hz}, 30$ Watts

FOR FURTHER INFORMATION PLEASE

Type

RF Output

Frequency Stability
Frequency Deviation
Monaural (PCL-505)

Composite (PCL-505/C)
Harmonic suppression
Spurious emissions
AM Noise
Modulation inputs
Monaural (PCL-505)

Composite (PCL-505/C)

Multiplex

Power Requirement

Dimensions

Shipping Weight (domestic)

All solid-state, direct FM, indirect crystal control

7 watts maximum, 5 watts nominal; Type N female connector
$\pm 0.0005 \%$

40 kHz peak for 100% modulation ($75 \mu \mathrm{sec}$ pre-emphasis used in PCL-505)
60 kHz peak for 100% modulation
Better than 60 dB below carrier
Better than 65 dB below carrier
Better than 70 dB below carrier
$+10 \mathrm{dBm}, 600 \Omega$ resistive, balanced, floating, barrier-strip connector
$3.5 \mathrm{~V} P-\mathrm{P}, 12,000 \Omega$, resistive, unbalanced, Type BNC connector
1.5 V P-P, 2000 , resistive, unbalanced, Type BNC connector
$120 / 240$ VAC $\pm 10 \%, 50-60 \mathrm{~Hz}$, 60 watts
8.9 cm ($3.5^{\prime \prime}$) high, 48.4 cm (19'1) wide, $40.6 \mathrm{~cm}\left(16^{\prime \prime}\right)$ deep
11 kg (25 lbs.)

2.3 Receiver

Monaural (PCL-505)
Program Output

Multiplex Outputs

Sensitivity

3 dB I.F. Bandwidth
80 dB I. F. Bandwidth
Composite (PCL-505/C)
Wide-band Output

Multiplex Outputs

Sensitivity

3 dB I.F. Bandwidth
80 dB I. F. Bandwidth
Power Requirement

Dimensions

Shipping Weight (domestic)
$+10 \mathrm{dBm}, 600 \Omega$, balanced, floating, barrier-strip connector
$22-85 \mathrm{kHz}, 1.5 \mathrm{~V} \mathrm{P}-\mathrm{P}$ behind 1000 , unbalanced, Type BNC connectors

30 dB signal-to-noise ratio, -100 dBm 60 dB signal-to-noise ratio, -81 dBm (program output, de-emphasized)

180 kHz
2.5 MHz
3.5 V P-P behind 1000Ω, unbalanced, Type BNC connector $100-240 \mathrm{kHz}, 1.5 \mathrm{~V}$ P-P behind 1000』, unbalanced, Type BNC connectors

30 dB signal-to-noise ratio, -100 dBm 60 dB signal-to-noise ratio, -73 dBm (wide-band output, de-emphasized)
330 kHz
3 MHz
$120 / 240$ VAC $\pm 10 \%, 50-60 \mathrm{~Hz}$, 12 watts; $13.5 \pm 1 \mathrm{VDC}, 0.2 \mathrm{~A}$
4.5 cm (1.75') high, 48.4 cm (19'1) wide, 34.9 cm (13.75') deep $7 \mathrm{~kg}(15 \mathrm{lbs}$.

The PCL-505 transmitter and receiver should be carefully unpacked and inspected for any shipping damage. Keep all packing material until performance is confirmed. Should inspection reveal shipping damage, or should hidden damage be revealed, immediately file a claim with the carrier.

It is recommended that the top covers on both the transmitter and receiver be removed for a brief superficial inspection. There are two screws that are used to hold the FMO in place during shipment. They should be removed from the bottom of the transmitter chassis before installation. Retain these screws and reinstall them if the transmitter is to be moved. This will prevent damage to the modules inside.

NOTE: DO NOT REMOVE THE COVERS ON THE TRANSMITTER RF POWER AMPLIFIER ASSEMBLY. DO NOT ATTEMPT DISASSEMBLY OR INSPECTION OF THE RECEIVER INPUT BANDPASS ASSEMBLY. DO NOT MAKE ANY ADJUSTMENTS OF ANY KIND TO THE EQUIPMENT. DO NOT APPLY POWER UNTIL SPECIFICALLY INSTRUCTED TO DO SO LATER IN THIS MANUAL.

The inspection should ascertain that the various modules, assemblies, and components are mechanically secure. After the inspection, replace the covers.

4. INSTALLATION

Although the PCI-505 is intended to provide a wireless equivalent to a wire-line interconnection between a studio and a transmitter site, there are some basic differences:
a) If the audio level applied to the transmitter is excessive, distortion will result and occupied RF bandwidth will increase.
b) Undermodulation or operation with lossy feedlines or operation over extremely long distances may result in degradation of the signal-to-noise ratio of the received signal.

> PCL-505, PCL-505/C
(Rev. 2/76) -5-
c) The PCL-505 incorporates pre-emphasis (treble boost) in the transmitter and de-emphasis (treble cut) in the receiver to enhance the signal-to-noise ratio. A byproduct of this process is an increased susceptibility to overload by higher audio modulating frequencies.
d) The PCL-505 has the bandwidth and linearity to carry control tones and secondary program material in the form of subcarriers.
e) The PCL-505/C uses special circuitry to allow the transmission of the composite stereo waveform (as well as control and program subcarriers) over a single link.

Drawings illustrating the various connections to be made to the PCL-505 transmitter and receiver are shown in Figures 1 through 6.

The PCL-505 equipments should be mounted in a standard rack, preferably between waist and shoulder height. The associated antenna should be mounted at a height such that a reasonably clear path is available between the transmitter and receiver sites. A path having 0.6 Fresnel zone clearance is recommended. Either vertical or horizontal polarization may be used, but the polarization must be the same at each end of the path. Generally, vertical polarization is employed.

Interconnections between the transmitter and its antenna (and between the receiver and its antenna) should be made using coaxial cable whose loss characteristics have been determined by an engineering study. For example, half-inch diameter foam-filled coaxial cable (with a loss of 3 dB per hundred feet) will have a loss of 9 dB if the length of tine totals 300 feet. Such a loss will generally be tolerable if the path is short, for example five to ten miles. It might prove disastrous on grazing or long paths. The gain of the transmitting and receiving antennas must also be considered.

Noting that the better feedlines are relatively inflexible, Moseley Associates has made available short "pigtail" assemblies. These are to be attached to the ends of the actual feedlines, and they enable movement of the equipment with less chance of harm to the

PCL-505, PCL-505/C $-6-$
(Rev. 10/75)

PCL-505 RECEIVER RF CONNECTIONS
FIGURE 2
 moons seg-a on EDUIVMLEMT.
3. coax gaice is he seafl on Equal.

PCL- 505 TRANSMITTER (MONO)
 PROGRAM AND MULTIPLEX CONNECTIONS figure 3

NOTES:

I. STEMEO GEMERATOR MAY 日E MOOEL SCA-S ON EOUIVALENT

4. conx canle is ag yeafu om equal.

PCL-505/C TRANSMITTER (COMPOSITE) PROGRAM AND MULTIPLEX CONNECTIONS FIGURE 5

equipment or feedline. These assemblies carry Moseley Associates part number KTL-(). As an example, use KTL-4 assemblies for Andrew foam-dielectric half-inch line. Each KTI-() kit consists of two pigtails with connectors attached, and two individual Type N Female coaxial connectors. Each such kit is sufficient for installation of one end of a link. Two kits would be needed if pigtails are desired at each end of a link.

Should it be desired to mount the receiving antenna on a seriesfed Standard Broadcast tower, the required isolation may be accomplished as illustrated in Figure 2. At the base of the tower, a Moseley Associates Isocoupler is used to allow passage of the STL RF signal while introducing no particular change in the tower base impedance. Isolation at Standard Broadcast frequencies is very high, and the Isocoupler introduces a minimal loss to the STL RF signal.

For monaural operation, the output of the program limiter is applied to the program input on the PCL-505 transmitter. Applied to the transmitter multiplex inputs are subcarrier signals (if applicable) for control and secondary programming purposes.

For dual-link stereo operation, the outputs of the program limiters. are applied to the program inputs on the pair of PCL-505 transmitters. Choose one link arbitrarily and (if applicable) connect the control subcarrier generator output to a multiplex input on that transmitter. Use the other link (if applicable) for the program subcarrier; connect the program subcarrier generator output to a multiplex input on that transmitter.

The program lines use barrier-strip connections and operate at +10 dBm at low audio frequencies. The multiplex inputs operate at 1.5 volts peak-to-peak and use Type BNC connectors.

For composite (single-link stereo) operation, the output of the program limiters are applied to the stereo generator, such as the Moseley Associates Model SCG-9. The output of the stereo generator is then applied to the wide-band input on the PCL-505/C transmitter. Also applied to the transmitter multiplex input connectors are subcarriers (if used) for control and secondary programming purposes. Multiplex Channel \#l should be used for the control subcarrier while Multiplex Channel \#2 should be used for secondary programming.

The program inputs to the SCG-9 Stereo Generator use barrierstrip connections and operate at +10 dBm at low audio frequencies. The output from the stereo generator is 3.5 volts peak-to-peak for full modulation and uses a Type BNC connector.

At the receiver site, the PCL-505 monaural (or dual-link stereo) receiver program output is applied to the program input(s) of the exciter or stereo generator. Also available from the receiver multiplex outputs are the subcarrier outputs to operate subcarrier equipment such as remote control and secondary program demodulators.

The program line uses barrier-strip connections and delivers +10 dBm at low audio frequencies. The multiplex outputs deliver 1.5 volts peak-to-peak and use Type BNC connectors.

The wide-band output from the PCI-505/C composite receiver is applied to the wide-band or composite input of the direct-FM exciter. The receiver multiplex outputs are also available to operate remote control and secondary programming demodulators.

The wide-band output from the receiver is 3.5 volts peak-to-peak behind 100Ω and uses a Type BNC connector. The multiplex outputs deliver 1.5 volts peak-to-peak and also use Type BNC connectors.

If either the transmitter or receiver is to be operated from 240 VAC, refer to the schematics for rewiring information.

With the transmitter properly terminated, power may now be applied to both the transmitter and receiver. At this time, system performance may be checked on a back-to-back basis.

Each transmitter metering position should be checked. The readings may be compared with the values shown in the final factory test data. It would be wise to record these readings for future reference. Note that the forward power (and the reflected power, in particular) may deviate somewhat from the final test values due to possible VSWR of the load.

Now the PCL-505 may be installed in the operating configuration and a skeleton proof of performance run. See paragraph 7.4 or 7.5 as applicable.

Routine operation of the PCL-505 system is very simple. Power should be applied to both the transmitter and the receiver at all times.

NOTE: USER MUST COMPLY WITH APPLICABLE OPERATING REQUIREMENTS OF GOVERNING REGULATIONS.

The transmitter unit may be remotely controlled and metered. Refer to Paragraph 7.8 on remote control of the transmitter. When no other meter readings are being taken, it is suggested that the program position be used to continuously monitor program modulation. Table 1 on the following two pages discusses frontpanel controls and switches for both the receiver and the transmitter.
6. CIRCUIT DESCRIPTION
6.1 Transmitter

The block diagram of the PCL- 505 transmitter is shown in Figure 7. Individual module block diagrams are shown in Figures 8 through 15.
6.1.1 Input Interface

Modulation input to the transmitter is applied to the modulation circuitry via an Input-Interface module (see Figure 8). The monaural version of this module terminates the program input with a pi-type attenuator. This assures a resistive input and allows various nominal input levels to be accommodated.

The output from the pad is routed to the input isolation transformer and then back to the board. At this point, there is an active pre-emphasis system with an amplifier whose gain is adjustable.

Following this amplifier is a 16 kHz low-pass filter to prohibit program components from interfering with any subcarriers which may also be applied to the link. The output of the filter is applied to an active summing amplifier.

The composite version of this module, used in the PCL-505/C, is similar except that it contains no input pad, has no preemphasis, and does not contain a low-pass filter.

PCL-505, PCL-505/C -15-
(Rev. 3/78)

MODEL PCL-505 FRONT-PANEL CONTROLS AND SWITCHES

TRANSMITTER

RADIATE \quad| Turns power on or off to multiplier driver |
| :--- |
| module the carrier is on or off. |

Metering Switch Positions
PROGRAM Meters main program applied to modulator. The "0" on the top meter scale represents 100% modulation.

MPX. Meters subcarriers applied to modulator. Percent injection is read on lower scale.

AFC	Meters DC level of AFC system. (See AFC ADJUST - next page)
FWD. PWR.	Meters forward RF power to antenna.
RFL. PWR.	Meters reflected RF power from antenna.
+VDC	Meters +13.5 VDC power supply on the bottom meter scale.
REF. OSC.	Meters reference oscillator and associated circuitry. Normal is between 10 and 20
on the bottom meter scale.	

(Rev. 2/76)

FINAL CURRENT

AFC ADJUST

POWER

Meters current of final power amplifier stage. Bottom scale is actual current used by the output transistor.

Screwdriver adjustment to set AFC to center of AFC range. Shown on meter in $A F C$ position.

Green L.E.D. is illuminated when primary power is applied to the transmitter.

RECEIVER

Metering Switch Positions
$+V D C$

SIGNAL

PROGRAM

MPX.

POWER

Meters +13.5 VDC power supply on the bottom meter scale.

Meters relative received signal strength. (See Final Test Data)

Meters received program level. The " 0 " on the top meter scale represents 100% program modulation of received signal.

Meters received subcarrier levels. This reading is relative and should be noted for future reference.

Green L.E.D. is illuminated when primary power is applied to receiver.

> BLOCK DIAGRAM PCL-5O5 TRANSMITTER
> (MONAURAL OR COMPOSITE)
> FIGURE ?

Both the monaural module and the composite module contain identical subcarrier-processing circuitry. Subcarrier inputs are terminated with individual level-setting potentiometers, whose outputs are applied to the active summer. The potentiometer outputs are also applied to a separate buffer amplifier for subsequent application to the metering system.

Also included on the Input-Interface module is a series of metering amplifiers. One metering amplifier processes the selected sample in a peak-sensitive fashion for reading either program modulation or subcarrier injection. This amplifier has a calibration control, a phase-splitter, and a full-wave peak-sensitive rectifier. The rectifier output is applied to a DC amplifier for application to the panel meter. Adjustable meter acceleration and zeroing controls are included in this amplifier.

A second metering amplifier buffers the AFC voltage for application to an external meter movement. A third amplifier buffers the forward power sample. A fourth amplifier buffers this same sample and allows its application to an external meter.

The external meters referred to here are those involved in remotely controlling the PCL-505 transmitter. For further information on this, see the section headed "Remote Control of the STL Transmitter."

6.1.2 Modulated Oscillator

The total modulation output from the summing amplifier on the Input-Interface module is applied to the frequency-modulated oscillator, shown in block diagram form in Figure 9.

A low-noise oscillator is frequency-modulated by a pair of varactor diodes. One of these modulators is used for frequency control and the other is used for program modulation. Subcarrier modulation, if used, is merely summed with the program modulation.

PCL-505 TRANSMITTER FREQUENCY-MODULATED OSCILLATOR (monaural or composite)

FIGURE 9

The output of the oscillator is applied to an amplifier. The buffer amplifier operates from 13.5 volts while the oscillator and program modulator bias operate from a regalator whose output is 9 volts. The primary purpose of this regulator is noise reduction.

The output of this module, in the region of 80 MHz and a power level of about 12 milliwatts, is applied to the frequency multiplier.

6.1.3 Frequency Multiplier

The output of the modulated oscillator is applied to the frequency multiplier, shown in block diagram form in Figure 10.

The first stage of this module is a buffer, followed by a doubler, tripler driver, and finally a power amplifier.

The RF output from this module is in the 485 MHz region at a typical power level of 120 milliwatts. It is applied to the power amplifier module. The RF output is also rectified by a diode and applied to the front-panel meter in the IPA position.

The input drive signal to the frequency multiplier is sampled and provides excitation to the AFC system.

6.1.4 Power Amplifier ($890-960 \mathrm{MHz}$)

The transmitter power amplifier (see Figure ll) accepts the 100 milliwatt 445480 MHz signal from the buffer multiplier, doubles and amplifies it to a nominal 5 watts. The first stage is a doubler with input and output filtering and matching. The second and final stages are $890-960 \mathrm{MHz}$ amplifiers. A nine section lowpass filter follows the final transistor to reduce all harmonics. Following the final RF amplifier filter is a dual directional coupler used to assist in the tune-up of the amplifier assembly and to provide drive to the panel meter.

PCL-505 TRANSMITTER MULTIPLIER
 (monaural or composite)

FIGURE IO

PCL-505 R F POWER AMPLIFIER

 (Monaural or composite)fIGURE II

Section 6.1.5 deleted from text

6.1. 6 High-Erequency Buffer and Divider

A sample of the modulated oscillator signal is taken from the input of the frequency multiplier and is applied to the High-Frequency Buffer and Divider module. The block diagram of this module is shown in Figure 12.

The first three stages of this module provide amplification and shaping to drive a high-frequency, integrated-circuit frequency divider. This divider accepts the amplified and shaped, modulatedoscillator signal and divides it by a factor of 16 down to the 5 MHz region.

This signal is applied to an amplifier which interfaces the highfrequency signal to a form acceptable to another divider, for further division down to the 1200 Hz region.

The output of this divider is applied to an output buffer amplifier which both drives the next stage of the AFC system and provides a metering sample.

PCL-505 HIGH-FREQUENCY BUFFER AND DIVIDER
(монаURAL OR COMPOSiTE)

FIGURE 12

6.1.7 AFC

The AFC module (see Figure 13) generates a stable reference signal in the 5 MHz region (carrier frequency divided by a factor of 192). The oscillator is crystal-controlled, with the crystal located in an oven which is proportionally controlled for best stability.

The reference signal is applied to an integrated-circuit frequency divider for division down to the 1200 Hz region. This 1200 Hz signal, along with the 1200 Hz signal from the divided-down modulated oscillator, is applied to an integrated-circuit phase detector. The output of the phase detector is applied to a 30 Hz low-pass filter to remove the 1200 Hz component present in its output, leaving only the DC frequency-correcting voltage. This voltage is appiied to an active lag-compensation circuit for processing prior to application to the frequency-modulated oscillator. The output of the lag compensator is applied to the AFC input on the modulated oscillator for frequency stabilization.

Note that the center frequency stability of the transmitter is determined by the 5 MHz oscillator; if the modulated oscillator should attempt to drift, the only effect will be a change in the AFC frequency-correcting voltage.

The oven temperature is sensed by a silicon diode mounted in the oven in contact with the heating element. A current is applied to this diode, and the voltage drop across it is compared with a voltage derived from a potentiometer. The output of this comparison amplifier is applied to a power amplifier which drives the oven heating element (resistor). The entire heating-control system operates on regulated DC and so is noise-free.

6.1.8 Power Supply

The block diagram of the power supply for the PCL-505 is shown in Figure 14.

Primary AC power is applied to the power transformer via an appropriate fuse. A bridge rectifier on the secondary provides unregulated DC which is applied to a series regulator. This regulator has current limiting and adjustable output voltage.

PCL-505 AUTOMATIC FREQUENCY CONTROL
imonaunal on composite)
FIGURE 13

PCL-505 POWER SUPPLY REGULATOR
(MONAURAL OR COMPOSITE)

6.1.9 LOSS OF LOCK SHUT OFF

The function of this circuit (see below) is to remove the 13.5 volt Direct Current (DC) from the Multiplier Driver which in turn turns off the RF output power. The circuit is comprised of four (4) subcircuits. The first is an active 250 Hz low-pass filter which passes the beat note from the AFC when the Frequency Modulated Oscillator (F MO) becomes unlocked from the AFC Reference Oscillator. The second is a comparator which amplifies the beat note when it is greater in amplitude than the pre-set comparator level. The third is a detector which changes the beat note to $D C$. The fourth is a clamp awitch which removes the DC drive from the base of a series gate transistor on the DC regulator printedcircuit board which in turn removes the 13.5 volts DC from the Multiplier Driver.

Also included on this module are miscellaneous control and metering components.

6. 2 Receiver ($890-960 \mathrm{MHz}$)

The block diagram of the PCL-505 receiver is shown in Figure 16. Individual module block diagrams are shown in Figures 17 through 25.

6.2.1 Input Bandpass Filter

The input to the PCL-505 receiver is applied to a bandpass filter (see Figure l7). This filter is down 3 dB at about 30 MHz from the carrier frequency and is down 50 dB at about 120 MHz from the carrier frequency. The input and output impedances of this filter are 50Ω.

6.2.2 RF Preamplifier

The output of the filter is applied to a preamplifier (see Figure 18). This amplifier has a 4 dB noise figure and provides about 12 dB of gain at the operating frequency. Input and output impedances are 50Ω.

6.2.3 Balanced Mixer

The output of the preamplifier is applied to the third module, a balanced mixer (see Figure 19). This mixer provides conversion to the 74 MHz first I.F. Immediately following the mixer proper is a single tuned circuit at 74 MHz and then a low-noise I.F. amplifier. Two more tuned circuits at 74 MHz , a high-gain I.F. amplifier, and then another pair of tuned circuits complete this module. The output is at 50Ω.

PCL-505, PCL-505/C
(Rev. 3/78)

PCL-505 RECEIVER BLOCK DIAGRAM ($990-960 \mathrm{MHZ}$ MONAURAL OR GONPOSITE)
 FIGURE 16

PCL-505 RF PRESELECTOR (890-960 MHZ)

(MOMAURAL OR COMPOSITE)

TYPICAL RESPONSE (850-950 MHZ)

Figune 17

PCL- 505 RECEIVER
ON-FREQUENCY R F PREAMPUFIER (MONAURAL OR COMPOSITE)
FIGURE IB

PCL- 505 BALANCED MIXER (FIRST)
 (890-960 mhz monaural or composite)

FIGURE 19

Excitation to the first mixer and local-oscillator input port is provided by the Local Oscillator module (see Figure 20). This module uses a crystal in the 50 to 55 MHz region. A quadrupler provides drive to the 217 MHz bandpass filter. The output of this filter is applied to a doubler, a 435 MHz bandpass filter, another doubler, and finally an 870 MFz bandpass filter. The output of this final filter is in the 3 to 5 milliwatt range at an impedance of 50Ω.

$6.2 .574-10.7 \mathrm{MHz}$ Converter

The 74 MHz output from the balanced mixer is applied to an integrated-circuit second mixer (see Figure 2l) for conversion to 10.7 MHz . Oscillator injection is provided by a crystal oscillator contained within the same module. This oscillator operates at a fixed frequency of 63.3 MHz . The desired 10.7 MHz output from the mixer is extracted by an L-C bandpass filter which is responsible for the basic selectivity of the receiver. The output impedance of this converter module is 50Ω.

6.2.6 FM Demodulator and Meter Amplifier

Due to the requirements of this circuit, it is not recommended that the detector be adjusted in the field. Field adjustments without the aid of a low-distortion $F M$ signal generator and distortion analyzer is difficult. Transformer Tl should only be adjusted using a nonmetallic tuning tool. Adjust Tl pink and blue slugs for maximum AF output from terminal 3 (AF) when observed on an oscilloscope. Adjust $T 1$ blue slug for minimum distortion from terminal 3 (AF) when observed on a distortion analyzer.

6.2.7 Metering and Muting

The baseband output from the FM demodulator is applied to a metering and muting module (see Figure 23). This assembly contains a peak-reading voltmeter which can be selected to read multiplex and program levels. It also contains a DC amplifier to operate an all-electronic muting system as well as a relay. The contacts from the relay are brought out to the rear of the receiver for alarm or fail-safe purposes. The output of the muting system is applied to the program and multiplex amplifier.

PCL-505 MUTING AND METERING AMPS
FIGURE 23

6.2.8 Program Amplifier

The monaural version of the program amplifier (shown in Figure 24) as used in the PCL-505 contains a 16 kHz lownpass filter whose purpose is to reject subcarriers above 22 kHz . Following this low-pass filter is an output amplifier with adjustable de-emphasis and automatic noise reduction. The de-emphasis adjustments allow the system frequency response to be tailored for extreme flatness. The automatic noise reduction circuit enhances the apparent signal-to-noise ratio, especially over extremely long paths or paths subject to moderate fading. It has no audible effect on the programming and is switch-defeatable. Note that all specifications for the PCL-505 are with this circuit defeated (disabled).

The program and multiplex amplifier assembly also contains a 22 kHz high-pass filter to reject program material below 16 kHz while passing subcarriers above 22 kHz . Following this high-pass filter is an adjustable-gain amplifier, an 85 kHz low-pass filter (to eliminate extremely high-frequency noise from the multiplex output), and an output buffer amplifier. The output of this buffer is applied to the output Type BNC connectors.

The composite version of the program amplifier (see Figure 25) as used in the PCL- 505 contains special circuitry for processing the complete stereophonic signal. The first stage is a preamplifier with adjustable high-frequency boost. This stage compensates for the slight baseband response rolloff caused by the selectivity of the I.F. system. This set of equalizers compensates for system envelope delay distortion.

Following the delay equalizer system is the subcarrier-removing low-pass filter. After the filter is an amplifier with adjustable low-frequency phase correction. This stage allows compensation of low-end system phase errors. It drives the output amplifier whose output is applied to the output Type BNC connector.

The program and multiplex amplifier also contains a 100 kHz high-pass filter which removes stereophonic and 67 kHz SCA material from the multiplex output. Following the high-pass filter is an adjustable gain amplifier, a 240 kHz low-pass filter, and a multiplex output buffer amplifier. The output of this buffer is applied to the output Type BNC connectors.

PCL-505 PROGRAM AND MULTIPLEX AMPLFIER
(manaural)

FIGURE 24

PCL- 505/C PROGRAM AND MULTIPLEX AMPLIFIER (couposite)

7.1 Recommended Standards and Data

Monaural--PCL-505:
Program Level +10 dBm (sinusoid)
0 VU (complex)
Note: these are low-frequency values, to be reduced as the audio frequency is raised.

Program Impedance

Control Subcarrier Frequency
Control Subcarrier Level
Program Subcarrier Frequency
Program Subcarrier Level
Dual Monaural (for stereo):
Program
Control Subcarrier Frequency
Control Subcarrier Level
Control Subcarrier Link \#
Program Subcarrier Frequency
Program Subcarrier Level
Program Subcarrier Link \#
Composite--PCL-505/C (single-link stereo):
600Ω, resistive, floating, balanced
26 kHz
Approximately $1.5 \mathrm{~V} \mathrm{P}-\mathrm{P}$
67 kHz
Approximately $1.5 \mathrm{~V} \mathrm{P}-\mathrm{P}$

See Monaural, above 26 kHz
Approximately $1.5 \mathrm{~V} \mathrm{P}-\mathrm{P}$
1
67 kFz
Approximately 1.5 V P-P
2

Program Level 3.5V P-P
Note: this signal, which is the composite stereophonic waveform, should be measured only with a wide-band oscilloscope

Program Impedance

Control Subcarrier Frequency
Control Subcarrier Level
Program Subcarrier Frequency
Program Subcarrier Level
Approx. 10K Ω (transmitter)
Approx. lK Ω (receiver)

110 kHz

Approximately $1.5 \mathrm{~V} \mathrm{P}-\mathrm{P}$
185 kHz
Approximately $1.5 \mathrm{~V} \mathrm{P}-\mathrm{P}$
(Rev. 10/75)

7. 2 Program Levels

The normal level required for full modulation of a PCL-505 monaural transmitter (or for each transmitter in a dual system) is +10 dBm . This is the level normally required for full modulation using a sine wave at low audio frequencies. Complex waves, such as speech and music, will indicate much lower on an ordinary effective or RMS meter such as the VU-type. Furthermore, the level required for full modulation decreases as the audio frequency rises. This is due to the pre-emphasis circuitry in the transmitter.

```
NOTE: THE ACTUAL MODULATION OF THE STL TRANSMITTER IS INDICATED BY THE FRONT PANEL METER. THIS METER IS FULL-WAVE PEAK-SENSITIVE, AND IS LOCATED AFTER THE PRE-EMPHASIS CIRCUITRY.
```

The modulation of the STL transmitter should be controlled by a limiter, preferably one of the frequency-conscious types. This limiter may be preceeded by an audio AGC system at the discretion of the individual station. The recommended method of adjustment of this chain of equipment is as follows:
a) Adjust the AGC input level controls. This is best done by using some form of actual program material. Adjust the control until the AGC unit is operating in the middle of its intended range.

In stereo systems, adjust both of the AGC input level controls until the AGC units are operating in the middle of their intended range without any stereo interconnection. It would be best to use actual program material, and preferably a source which is balanced level-wise or else a monaural source with identical material in each channel. After the input level controls have been adjusted, reapply the stereo interconnection.
b) The remaining adjustments will all be made using a steady 400 Hz sine wave for the test material. It is assumed that the output of the AGC unit is connected to the limiter, and the limiter output is connected to the PCL-505 program input. In stereo systems, two identical audio chains will be involved.
(Rev. 10/75)
c) Adjust the output of the AGC unit to some standard level. Using the test tone, set the AGC output level to +10 dBm .

For stereo systems, adjust both AGC unit outputs to the same level.
d) Adjust the limiter input control. Using the test tone, adjust the limiter input control for a satisfactory degree of limiting as read on the limiter panel meter.

In stereo systems, adjust both of the limiter input level controls until the limiters are operating with the desired degree of limiting without the stereo interconnection. The limiting activity may be read on the limiter panel meters. After the limiter input level controls have been adjusted, reapply the stereo interconnection.
e) Adjust the limiter output level control. Adjust the control for an indication of " 0 " on the PCL-505 panel meter in the program position.

In stereo systems, adjust each limiter output level for a reading of " 0 " on the corresponding STL program level meter.
f) In composite systems where the stereo generator (such as the Moseley Associates SCG-9) is located at the studio, the limiter outputs are set in a slightly different manner. Disable the audio input to one of the limiters. Then set the output level of the remaining limiter for an indication of " 0 " on the stereo generator output meter. This sets the level for one channel. Now follow the same process for the other channel.

7.3 Subcarrier Levels

In STL subcarrier systems, control or program signals are generated at the control point or studio. The subcarriers, in turn, are applied to the STL transmitter. The modulation of the
subcarrier by the control tone or program is commonly called "deviation" of the subcarrier. The modulation of the STL by the subcarrier is commonly termed "injection" of the subcarrier onto the link. The PCL-505 is designed for subcarrier injections of 10% to It will be found that the control systems need less than the program systems; the program systems are more demanding, particularly in the area of signal-to-noise ratio. The panel meter on the PCL-505 is factory calibrated to read percent injection on the lower scale when the MPX push button on the front panel is depressed. This should be coincident with a subcarrier input to the multiplex connector of about 1.5 volts peak-to-peak. At the same time, the PCL-505 receiver should deliver about the same output.

Filters in the PCL-505 are used to separate the program and subcarrier signals. For this reason, be sure to use a subcarrier in an appropriate frequency region when testing is performed. Monaural links will pass subcarriers in the 22 kHz to 85 kHz region, while the composite links are designed to pass 100 kHz to 240 kHz . Subcarrier frequencies above 185 kHz are not recommended for systems operating under FCC regulations.

7.4 Proof of Performance--PCL-505

There are three primary areas to be considered in measuring the performance of the STL:

> 1. Frequency response
> 2. Distortion
> 3. Signal-to-Noise ratio

Other items to be considered are cross talk into subcarriers (if used), transmitter power output, and receiver sensitivity. In addition, the composite PCL-505/C must be tested in a manner to insure passage of the stereophonic waveform. The requirements for the PCL-505/C are noticeably different from those of the monaural PCL-505, and will be covered separately.

Presented here are suggestions for proving the performance of the PCL-505. In this discussion, only the link will be considered; preceeding and subsequent apparatus (excepting test equipment) will be left out of these suggested procedures.

PCL-505, PCL-505/C
(Rev. 4/76)

In measuring the frequency response of the STL, it should be remembered that pre- and de-emphasis are incorporated into the link to enhance the signal-to-noise ratio. Because of this, the STL cannot be truly considered as a "piece of wire." The transmitter modulator and the receiver demodulator have limited signal handling capability. Taken as a system, the link will display the following characteristics:
a) At low modulating levels (as for example 20 dB below normal) the frequency response of the system and the receiver output capability will both be flat.
b) At higher modulating levels the audio distortion will increase somewhat, due primarily to the selectivity in the receiver.
c) At still higher modulating levels the audio may actually be clipped, due primarily to overload in the transmitter or receiver audio processing circuitry. In addition, the receiver output level will fall off. The receiver program output level capability is similar to the deemphasis curve used in the receiver.

These points should be kept in mind when running a proof of performance. If it is observed at any time that either the STL transmitter or the STL receiver program-level metering is indicating beyond the "0" mark, then the modulation level must be reduced by reducing the input to the STL transmitter.

It is undesirable to constantly change the level of an audio generator when running tests. To keep the modulation constant, a de-emphasis network may be connected between the audio generator and the STL transmitter. Such a network will automatically reduce the audio level as the frequency is raised. However, the receiver output level will fall off as the audio frequency is increased, and a comparison with a de-emphasis chart will be required to enable a system response measurement.

A simpler and more commonly used method of testing the frequency response of the STL is to merely reduce the audio level by several $d B$ (deliberately undermodulate) and then make
the assumption that the link is a "piece of wire." This assumption cannot be made at full modulation levels. It is suggested that the audio level be reduced, 20 dB for frequency response measurements. It will be found that this expedites frequency response measurement.

Distortion measurements should always be made at full modulation. Regardless of the audio frequency being used, deviate the transmitter fully (to the " 0 " mark on the transmitter modulation meter). Notice that when this is done that output level from the receiver will be lower at the higher modulating frequencies. . For this reason, the distortion meter must have its input level control reset at each audio test frequency.

The signal-to-noise ratio is very simple to measure, but a few pitfalls may obscure the true reading. Establish a reference level in the system by modulating the transmitter with a test tone in the low-audio-frequency region, such as 400 Hz . Observe that the level required will be about +10 dBm , and more importantly, that the STL receiver output level will be at +10 dBm . When this test tone is removed, the remaining signal observed at the receiver output will be noise.

It has been observed that the residual noise output from the STI, is sometimes masked by locally-generated interference (such as an AM broadcast transmitter in the vicinity of the test equipment) or by a ground loop, typically in the STI receiver/test equipment combination. It is sometimes helpful to ground the "low" side of the test equipment at one or both sites if the noise is observed to be power line related hum.

AM broadcast interference is best reduced by filtering particularly by using bypass capacitors across the program lines or between these lines and chassis ground.

If the noise is observed to be high-frequency hiss, it is probable that the receiver is receiving an inadequate signal. A review of the antenna installation and/or path engineering would probably be in order.

7.5 Proof of Performance--PCL-505/C

The basic requirements for the PCL-505/C composite STL are similar in nature to those for the PCL-505 monaural STI, but certain additional tests must be made. These extra tests are due to the more severe requirements placed on the STL in order that it may handle the composite stereo waveform with minimal degradation.

Although frequency response and distortion tests can be made on the STL as such, they will be found to be relatively immaterial with regard to its intended purpose of passing stereo. Typically, the figures obtained by such simple tests will be good enough to tax the test equipment; only an actual stereo signal of proven integrity will truly prove the capability of the link.

The equivalent of the monaural STL frequency-response test is the stereo STL separation test. In order for the stereo signal to easily pass the stereo technical standards, the frequency response of the composite STL must be flat within about 0.2 dB from 30 Hz to 53 kHz ; at the same time the time delay must be constant within about one-half microsecond. This is no simple task and is the reason for the equalizing circuitry in the PCL-505/C receiver.

Separation in the PCL-505/C is best measured by using an actual stereo generator of known good performance for a test signal. Apply an audio test tone to one channel of the generator at the normal level and observe the composite (wide-band) output from the PCL-505/C receiver, using a stereo monitor. For modulating frequencies from 30 Hz to 15 kHz the separation should easily comply with accepted stereophonic standards, providing the stereo generator used meets these standards. The separation right to left and left to right should be similar.
,
Note that this test requires a monitor which can read a baseband signal. If no such monitor is available, then the transmitter's exciter will have to be added onto the chain of equipment under test.

Distortion in the PCL-505/C is best tested by monitoring the cross talk generated in á stereo signal. Cross talk, as the term
is used in stereophonic broadcasting, measures unwanted frequencies in the $L-R$ subcarrier channel (23 kHz to 53 kHz) which result from desired signals in the $\mathbb{L}+\mathrm{R}$ channel (50 Hz to 15 kHz) as well as those frequencies appearing in the $L+R$ channel caused by modulation in the $L-R$ channel. While not generally recognized, cross talk is caused by both linear (vector) and nonlinear distortions in the system. As linear (vector) distortion is introduced only by phasing errors in the L and R audio channels prior to matrixing, the PCI-505/C cannot modify or alter these products. Nonlinear distortion, i.e. harmonic distortion, in the PCL-505/C system can degrade the cross-talk performance. To measure cross talk, both audio channels in the stereo generator are fed with the same test tone, in parallel (in phase) such that the subchannel component is suppressed. Then the stereo monitor is switched to read the level of the subchannel component. For modulating frequencies from 50 Hz to 15 kHz the subchannel component must be suppressed more than 40 dB .

Note that when the monitor is switched to read the stereo subchannel, it is reading harmonics of the main channel, appearing in the 23 kHz to 53 kHz region. In addition, it is responding to any subchannel feedthrough from the stereo generator, a form of vector cross talk. The 38 kHz switching-signal may also be present.

For the second part of the cross talk test, the stereo generator audio channels are fed in opposition (out of phase) with the same test tone such that the main channel component is suppressed. Then the stereo monitor is switched to read the level of the main channel component. For modulating frequencies from 50 Hz to 15 kHz , the main channel component must be suppressed more than 40 dB . Note that when the monitor is switched to read the main channel that it is responding to intermodulation components originating within the $L-R$ channel. In addition, it is responding to any main channel feedthrough from the stereo generator, a form of vector (or linear) cross talk.

The signal-to-noise ratio of the PCL-505/C may be measured using any of three different systems:
a) Measuring the signal-to-noise ratio of the wide-band output;
b) Measuring the signal-to-noise ratio of the wide-band output; with de-emphasis added to the measuring voltmeter;
c) Connecting the wide-band output to a stereo demodulator (monitor) and measuring the signal-to-noise ratio of a demodulated audio channel.

Of these three, it appears that the second method is the simplest to implement and yields consistent, meaningful results.

7. 6 Cross Talk into Subcarriers

Cross talk into subcarriers may be tested by using a test tone on the program or main channel while measuring the signal-to-noise ratio of the demodulated subcarrier. For this test, be sure the subcarrier injection is correct. Then modulate the subcarrier generator with a low audio frequency such as 400 Hz . Measure the audio output from the subcarrier demodulator. This level will be the standard level. In the case of the Moseley Associates Model SCD-8, this should be +10 dBm . When the test tone is removed from the subcarrier generator, the residual signal from the subcarrier demodulator will be noise. When the main channel of the STL is modulated, it will generally be observed that this noise level will increase; the signal-to-noise ratio will decrease. Cross talk levels measured with steady state tones are usually higher than when measured with normal program content. Main channel to subcarrier cross talk measured during normal main channel programming is typically 50 dB below the standard level.

To measure subcarrier to main channel cross talk, apply the normally modulated subcarrier to the STL with no main channel program. Subcarrier signals appearing in the main channel output must be at least 60 dB below normal main channel program audio output.

7.7 Composite Receiver to Exciter Interface

The composite STL receiver output must be carefully connected to the wide-band input on the FM exciter. The interconnection must be made with shielded wire (small coaxial cable). Attenuation of the composite signal, if needed, should be done right at the exciter, preferably inside any shielded enclosure. A third point of which the installer should be aware is the possibility of a ground loop.
(Rev. 10/75)

This will manifest itself as apparently unavoidable power line related hum. Either the receiver or the transmitter exciter may be operated from an isolation transformer should this occur. If this offers no relief, then an isolation transformer must be wide-band such as a 600Ω to 600Ω high-fidelity or a suitable telephone line repeat coil. Such a transformer should not be needed in exciters using a differential amplifier input stage.

7.8 Remote Control of the STI Transmitter

The PCL-505 transmitter has been designed to be operated by remote control. Radiate/standby control capability, as well as metering outputs for power and AFC, are built in.

Figure 26 shows the interconnections required for remote control of the transmitter. All connections to the transmitter are made via Jl on the rear of the unit. The interconnecting cable should have not more than a few thousand ohms resistance per conductor. The panel itself is shown schematically; this entire assembly is available from Moseley Associates as the Model ECP-5 Extension Control Panel.

The Radiate/Standby switch will place the transmitter in a radiating condition when closed. It is electrically interconnected with the control switch on the transmitter itself. The AFC and Output meters give relative indications of these two parameters. The two calibration potentiometers are set to give a suitable meter deflection, as for example, half-scale.

7.9 Adjustment Guides

Various adjustments have been provided in the PCL-505 to allow realistic manufacturing tolerances and to provide operational flexibility. The settings of these adjustments should not be altered unless it has been determined that an apparent problem will be resolved by resetting a specific control. The locations of adjustments, as well as related test points and plug-in components, are shown in the following series of adjustment guide drawings.

PCL-505, PCL-505/C

EXTENSION CONTROL PANEL

EXTENSION CONTROL PANEL CONNECTIONS

FIGURE 26

Should measuring equipment indicate that there is a problem in the system, and further should this trouble be positively traced to the PCI-505, then readjustment may be in order. In any case, controls should not be reset unless it is quite certain that a specific problem will be solved by a specific readjustment. A description of the various controls is given here to assist the operator with the proper test equipment to correct misadjustment. These controls are internal to the receiver and routine readjustment ("tweaking") is discouraged.

The following descriptions of the PCL-505 transmitter internal controls are with reference to drawing $21 A 2503$ (for the composite, monaural, and dual versions).
+13.5V REGULATOR ADJUST - While monitoring the 13.5 volt line with an external voltmeter, set the $+13.5 V$ regulator adjustment control for a reading of +13.5 volts $D C$.
+VDC METER CALIB. - Depress the "+VDC" switch and adjust the +VDC METER CALIB. control for a front-panel meter reading of 13.5 on the lower scale.

OVEN TEMPERATURE ADJUST - This control allows adjustment of the proportional oven temperature. It is set for a reading of 3,7 th 4.3 volts $D C$ at the oven heater pin 3, located inside the AFC sधbassembly, and chassis (ehassis ground).

This reading
should be taken after the temperature (and therefore the voltage has reached a stable value at room ambient. This will take about four or five minutes. If readjustment is necessary, it should be accomplished only in small increments with time given to allow restabilization.
AFC ADJUST (COURSE) - This control sets the free-running frequency of the modulated oscillator. The front-panel AFC ADJUST control should first be set to the middle of its range. While monitoring the AFC switch position, set the internal AFC ADJUST control slowly until "lock" is achieved as indicated by the meter going to the midscale position. Confirm AFC lock by operating the front-panel AFC ADJUST potentiometer and observing that the meter follows the rotation of the potentiometer. Return the potentiometer to the center of its range.

The following controls are all located in the Multiplier Module:
DOUBLER TUNING; TRIPLER TUNING; BUFFER TUNING; OUTPUT TUNING These controls are all tuned by monitoring the IPA DRIVE meter position and tuning for maximum meter deflection.

The following controls are located within the Power Amplifier module:
Power Amplifer, the two DOUBLER INPUT TUNE controls are adjusted for approximately 0.5 VDC across R701. Adjust DOUBLER OUTPUT TUNE and DRIVER INPUT TUNE for 0.1 to 0.5 VDC across R702. This voltage is somewhat a function of the tuning of the following stage. Adjust FINAL OUTPUT TUNE and the two FINAL OUTPUT TUNE adjustments for maximum output as indicated on the front panel meter.

FORWARD POWER METER CALIB. - This control is set to read " 0 " dB when monitoring the FWD PWR meter position.

PROGRAM MODULATION SET - This control sets the deviation of the transmitter. For a composite system an input of 3.5 volts peak-to-peak is standard, and the deviation is 60 kHz peak. For a monaural or dual system the input is +10 dBm at a frequency of 1000 Hz , and the deviation is 40 kHz peak.

MUX 1 LEVEL SET - This control sets the deviation of the transmitter due to a subcarrier applied to the MUX INPUT \#l. With a subcarrier of 1.5 volts peak-to-peak amplitude, the control is set for 15% injection (modulation). This will be 6 kHz for a monaural or dual system, or 9 kHz for a composite system.

MUX 2 LEVEL SET - As with the Mux 1 control, this adjustment sets the transmitter modulation for the MUX INPUT \#2.

METER DC ZERO ADJUST - This control is used to electrically zero the panel meter deflection in either the PROGRAM or MPX positions. The meter's mechanical zero should be checked prior to adjustment of this control, which is set in the PROGRAM position without any program input.

MUX METER CALIB. - This control is set to produce a - 3 dB deflection when program material sufficient to produce 100% modulation is applied to the transmitter.

METER ACCELERATION ADJUST - This control enables the panel meter to have the best possible response time in the PROGRAM and MPX positions. It is adjusted while rapidly varying the level of a test tone applied to the transmitter. Adjust for a 0.5 dB overshoot on the panel meter while monitoring a step going from no modulation to full modulation.

The following descriptions of the PCL-505 receiver internal controls are with reference to drawings 21 A 2501 (composite receiver) and 21 A2502 (monaural or dual receiver).
$+13.5 V$ REGULATOR - While monitoring the 13.5 volt line with an external voltmeter, set the +13.5 V REGULATOR control for a reading of +13.5 volts $D C$.
+VDC METER CALIB. - Depress the "+VDC" meter switch and adjust the +VDC METER CALIB. control for a front-panel meter reading of 13.5 on the lower scale.
lst L.O. FREQUENCY - This capacitor is adjusted to produce a second I.F. of 10.7 MHz when a carrier of the correct frequency is being received.

OSCILLATOR OUTPUT; QUADRUPLER OUTPUT; DOUBLER OUTPUT; OUTPUT TO MIXER - None of these controls should be adjusted unless a spectrum analyzer is available. If an analyzer is available, these controls may be adjusted for maximum output consistent with freedom from noise or spurious outputs. The minimum acceptable output level from this module is 4 milliwatts into a 50 ohm termination.

CONVERTER OSCILLATOR OUTPUT - This control is adjusted for maximum indication of received signal strength. On strong signals, the panel meter may show little change as this control is adjusted.
(Rev. 4/76)

CONVERTER OSCILLATOR FREQUENCY - This control is adjusted for an oscillation frequency of 63.3 MHz . This control is only a vernier on the oscillator and may be left at midrange.
10.7 MHZ I.F. - These four controls affect the shape of the receiver selectivity curve. They are first adjusted by using a sweep generator and are slightly adjusted if required to minimize crosstalk into program subcarriers, if used. Should this readjustment be made, then the filter must be rechecked using the sweep generator.

74 MHZ FIRST I. F. - These controls should be adjusted only when a carrier-frequency sweep generator is available. They are adjusted for maximum output from the module when the local oscillator and carrier-frequency sweep generator are applied to the inputs. Should the controls be more than slightly off-resonance, or should the bandwidth be insufficient, then the possibility of oscillation exists. This will be revealed by examination with a spectrum analyzer. The correct bandwidth of this module is 4 MHz total width at the 2 dB point.

INPUT PRESELECTOR - These controls are adjusted for maximum indication of received signal strength. On strong signals the panel meter may show little change as these controls are adjusted.

DEMODULATOR - These controls Tl primary and Tl secondary are adjusted for maximum $A F$ output from the demodulator output terminal (right-hand side, rear-most terminal). Then adjust the BLUE slug, Tl secondary, for minimum audio distortion.

MUTING THRESHOLD - This control is set to mute the receiver output when the carrier level is below 50 microvolts (-73 dBm).

OUTPUT AMPLITUDE - This control is used to adjust the receiver output signal amplitude. It is adjusted for an output amplitude of +10 dBm at low audio frequencies for monaural systems or 3.5 volts peak to peak for composite systems, at full modulation of the transmitter. See paragraph 6.2 .6 before making adjustments.

PROGRAM METER ZERO - This control is used to electrically zero the panel-meter deflection in either the MUX or PROGRAM positions. The meter's mechanical zero should be checked prior to adjustment of this control, which is set in the program position when a quiet, unmodulated carrier is being received.

MUX METER CALIB. - This control is used to adjust the panel meter calibration when the MUX button is depressed. It is set to read -3 dB when a subcarrier modulates the system 15%. Prior to adjustment of this control, the transmitter modulation must be set and the receiver output amplitude control must be set.

PROGRAM METER CALIB. - This control is used to adjust the panel meter calibration when the PROGRAM button is depressed. It is set to read " 0 " $d B$ when a test tone modulates the system fully. Prior to adjustment of this control, the MUX meter calibration must be correctly set.

PROGRAM METER ACCELERATION - This control enables ${ }^{-}$the panel meter to have the best possible response time in the MUX and PROGRAM positions. It is adjusted while rapidly varying the level of a test tone applied to the transmitter. Adjust for 0.5 dB of overshoot on the panel meter while monitoring a step going from no modulation to full modulation.

MUX OUTPUT LEVEL - This control sets the level of the subcarrier(s) appearing at the multiplex output connectors. It is adjusted for a level of 1.5 volts peak to peak of subcarrier when that subcarrier modulates the transmitter 15%. The OUTPUT AMPLITUDE control must be set prior to setting the multiplex output level control.

The following three controls are peculiar to the composite version of the PCL-505:
H. F. GAIN - This control adjusts the frequency response of the composite STL, primarily in the 30 kHz to 50 kHz region. It is set to maximize stereo separation when a test tone of 1 kHz is applied to the stereo generator.
(Rev. 4/76)
H. F. TILI - These controls affect the time response of the composite STL, primarily in the 50 kHz region. They are set to maximize stereo separation when a test tone of 15 kHz is applied to the stereo generator.
L. F. TILT - This control affects the frequency response of the composite STL, primarily in the 50 Hz region. It is set to maximize stereo separation when a test tone of 50 Hz is applied to the stereo generator.

The following three controls are peculiar to the monaural (or dual, for stereo) version of the PCL-505:

5 KHZ ADJUST - This control allows the frequency response of the system to be optimized in the 5 kHz region. It is adjusted for the same level from the program output of the receiver, when the test tone applied to the transmitter is switched back and forth between 500 Hz and $5,000 \mathrm{~Hz}$. Be sure the modulation level never exceeds the "0" mark on the PROGRAM position of either the transmitter or receiver panel meters; it is advisable to run this test several $d B$ below normal level.

15 KHZ ADJUST - This control allows the frequency response of the system to be optimized in the 15 kHz region. It is adjusted for the same level from the program output of the receiver when a test tone applied to the transmitter is switched back and forth between $1,500 \mathrm{~Hz}$ and $15,000 \mathrm{~Hz}$. As with the 5 kHz adjustment, be sure the modulation level never exceeds the "O" mark.

NOISE REDUCTION - This control enables an enhancement of the measured signal-to-noise ratio of the signal as delivered from the program output of the PCL-505 receiver. It can be disabled by operating the noise-reduction switch to the Off position. The preferred method of adjustment is to adjust the received signal strength until the signal-to-noise ratio is 60 dB , and then adjust the noise reduction control for an enhancement of 8 dB to 10 dB .

FIELD CHANGES - For program inputs (ref. 91C6887) of less than 3.5V P-P into J4, change R20l according to the following;

Signal (V P-P)	R201 (K ohms)
0.5	0 (jumper wire)
1.0	1.6
1.5	3.3
2.0	4.7
2.5	6.8
3.0	8.2
3.5	10

Note: 1. $\quad \mathrm{Zin}=\operatorname{Rin}+1.7 \mathrm{~K} \Omega$

$$
\text { 2. } \mathrm{R} 201=\frac{\operatorname{Ein}-0.5}{0.3} \mathrm{~K} \Omega
$$

The signal out of AUDIO OUTPUT J3 on the Receiver will still be 3.5V P-P for the correct input selected.

hoSEley as Sociales inc III CASIIIIAN DRIVE GOLEIA CA 805 968－9621

COMPUNENI ITEH NO．	$\begin{aligned} & \text { SIOCK } \\ & \text { LOCA } \end{aligned}$	MANUFACTURER PARI NUM日ER	COMPONENT DESCRIPTION
			．
3630399	2143	3N140	XT NF3N140．4H O2OV50H
3640018	2144	A－400	XVNSA400．2H0056015V25H
3640109	2744	DI－128	XI NPDI－128 5．8H066M036V．25A
3640133	2744	DM5－128	XI NPDH5－12B 29H O36V02A
3640141	2144	DH10－12日	XI NPDHIO－128 50H O36V04A
3640182	2713	H．J－2955	XT PPMJ2955 115H2．5HOSOV15A
3650116	2143	MCII23CL	AGLIR IYPE 1723 VARV－15A 632
3660008	2012	SN12741P	IC UATGIP OPAMP GEN COMP
3660024	2743	SN7274日P	IC UAT48P OPAMP UNCOHP
3660297	2143	SN7486N	IC SN7486N OU 21 EXCL OR
3600170	2113	SCL 4020AE	IC SCL4020AE 14 STAGE EIN CI
3730173	2143	LH－318N	IC LHSIEN OPAHP HISPEED
3110199	2743	LH－324N	IC LH324N DPAHP SNGL SUPL
3730322	2143	MC\350P	IC HCI350P DPAHP
3730348	2143	HC1355p	IC MCI355P AHP FH／IF
3130319	2143	MC1590G	IC HCIS90G AhP VIDEO

MOSEIEYASSOCIAIES INC
IIICASIILIAN DRIVE
GDLEIA CA 93117
BOS 9GU-9G2I

QUANTIIY

PER

UNIY
SALES PRICE
37.50
37.50
37.50

IOTAL SALES PRICE
37.50
37.50
37.50

NOTES:
I. NORMAL: NO NOISE REDUCTION noise reduction a noise reduction CIRCUITRY ACTIVATED

				PCL-505 MONAURAL RECEIVER ADJUSTMENT LOCATIONS						
						RACt. I	$\underline{1 / n, ~} \times \mathbf{x}$.03, . $\mathrm{xxx}=.0$		
					W\%	KF	26 MAR 75	scalit NONE		
0					che	Fxy	28 MARTS	21 A 2502		D

notes.
1 UNLESS OTHERWISE SPECIFIEQ
resistor values are in ohms $1 / 4 \mathrm{~m} .10 \%$
iapaciton values are in microfabaci
henotes selecteo value
af voliages measured using textaonics sai
scipe, with type az plug-in, ano non conpensateo
a dC volitages iesteo with iomig input bun
5. VOLIGGES SHOULD 日E Within 20% of that

SHOWN OM THE SCHEMATIC.
6. component layout zaa 2480
7. PC board siasge

NOTES
1．UNLESS OTHERWISE SPECIFIED ALL RESISTOR VALUES ARE IN OHMS $1 / 4 \mathrm{~W} .10 \%$ ANO
CAPACITOA VALUES AREIN MICROFARADS

2．P．C．日OARO SIA 5394.
3．SCHEMATIC 91日G日㫜

notes
1 URIESS OTHEHWISE SHECIFIED
HESISIOA Values ane in ohms $1 / 4 \mathrm{w} .10 \%$

- capacitor valuls ane in microfahaus
a

1 de voliages ifsifo with tomeg infut ovm

5. Voitage should ee within 20% of imal

6 сомринемl layout
7. PC boakd sia sse4

notes

1. UNLESS OTHERWISE SPECIFIED

RESISTOR VALUES AREIN OHMS $1 / 4 w 10 \%$
CAPACITOR VALUES ARE IN MICROFARADS:
2. P.C. BOARD 54A5632
3. SChEMATIC SICG日时

notes.

1. UNLESS OTHERWISE SPECIFIED
g voltages shoulo be within 20% of that Resistor values are in ohws $1 / 4 \mathrm{w}, 10 \%$ Capacitor values are in microfaracs
2. © denotes selected value.
3. hf voltages measured using tekthonics gel SCOPE, WITH TYPE AR PLUG-IH, AND NON COMPENSATED
4. AC YOLTAOES TESTEO WITH IOMEG INPUT OVM

motes
I UNIESS OTHERWISE SPECIFIEO ansision vaiues ahe in ohms $1 / 4 \mathrm{w} .10 \%$
Capacilon values are in michofarados
n denulfs selecteo value
b hi voliages measured using tektronics sol SCOPE. WITH ITPE EZ PLUG-IN, ANO NON COMPENSATED

- dC voltages iested with iomeg inpui dvm

5 voliages should be within 20% of that SHOWN ON THE SChematic.
6 COMPONENT LaYOUT 2002763 CI
7. PC board sigsegaliz

	CR 306*		ca 307 ${ }^{*}$	c314*	c3/1,
ITEM I	150/240/330 MHz	88105 A		. 001	2OPf JFD
ITEM 2	$450 / 760 \mathrm{MHz}$	MV840	MVE40	IOPF JFD	10คf JFD

					SCHEMATIC XMTR FMO ISO/ $240 / 330 \mathrm{Mliz}_{2} 8450$; $960 \mathrm{MH}_{2}$ 				
					own	D.T.W.	400779	scals	
Д	θ	8	20		${ }_{\text {cmm }}$	R	1-16	91B7195	

NOTES:
I. UNLESS OTHENWISE SPECIFIED, RESIGTOR VALUES ARE IN OHMS, $1 / 4 \%, 10 \%$ CAPACITOR VALUES ARE IN MICROPARADS.
2. SOLDER ALL RESISTORS A CAPACITORS THAT GO TO GROUND ON GOTH SIDES OF P.C.BOARD.
3. P.C. BOAMD SIASGS9 REV. C7.
4. SCHEMATIC 9186877. REV.G ϕ.

5 \# TRIM GEOI-3 LEADS TO $1 / 8^{4}+1 / 32^{\prime \prime}$ WHEN USING GREEN $\&$ PIN SOCKETS.
6. SOLDER ALL .OI UF CHIP CAPACITORS WITH SIL Yer-aEARIMG SOLDER. FED. SPEC OO-S-57I OR EQUIV.

									$\begin{aligned} & \frac{n}{2} \\ & \frac{2}{n} \\ & \sum_{2} \end{aligned}$		\qquad							
				COMPONENT LAYOUT XMTR BUF. MULT.														
				OL	nact.						1.37. . $\mathrm{x} \times$. 030						
				Ow	G M						12-19-75	SCALE: FULL						
				K	FXY						21 JAN 76							
I	$\underline{5}$	0	1.			10	-		∞				ENG	12988	$21) \cdot \sin 16$			

notes:

1. UNLESS OTHERWISE SPECIFIED
aESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W}, 10 \%$, cafaciton values are in michofahads.
2. FC BOARD 5IA5659.
3. COMPONENT LAYOUT 20 A 2561 .

f

NOTES:
I. UNLESS OTHERWISE SPECIFIED,

RESISTOR VALUES AREE IN OHMS, $1 / 4 \mathrm{~mm}, 10 \%$
CAFACITOIV VALUES ARE IN MICROFARAIOS
2.P.C. EOMRO SIAS750, REV. O6
3. SCHENIATIC SIBTOSE, REVE
5. DENOTES AIT COIL $3-2022$ AT.

L701,L703, L704, L706, L708, L709
L711, L712.
Ga, COPPER TAPE CUT in 3/ika wIOTh WRAPPED AROUND EDCGE OF BOARD AND SOLDER TO EDTH SDEES. SLSO 4 PLACES OM EACH RECTANGULAR HOLE. WHEREVER FOIL PATTEITN EXTENIDS TO EDGE, TAFE MUD SOLDER TO DOTTOM FOIL, EXCEFT AT 1701. SEE DETAIL (B)
7. ThPE holes for giot and gToe between wide leads in mannkr shown th detall (C)
B. USE SILVER- BEARING SOLDER, (FED. SPEC. QQ-g-S 71 DR EQUIV.), KESTER NLOY SNGE ORGMN,
ON ALL PADS FOR CHIP CAPACITORS. DO NOT MIX SOLDER.
9. C706 is EFJ 278-0410-005 (4-10PFIOA JOHANSON 9372 (3-12 PF).
10. INSTALL QTOI AND OTO2 SIUD NUTS WITH TORQUE WRENCH AND
 nuts (ITEMMA) 2 flcs. USE hear Sink compound. SEE DETAIL (D)

DETALL (D)

TRIM LEADS TO $\% 0^{\circ}$ - NOTEH INDICATES ORIENTATION
WIIC DO NOT PUSH DOWN WIEH HSTALLING

motes:

1. UHIESS OTHERWISE SPECIFIED CAPSISTOAG VALLUES ARE IN OHMS, $1 / 4 \mathrm{w}, 10 \%$ fatados.
2. PC. boand slastso REV. OG

3 couponent layout zod cés,
4. LCTOI has 22 ol 5/16"LEAD

NOTES

I UNLESS OTHERWISE SPECIFIED
RESIGTOR VALUES ARE IN OHMS.I/4W,IO\% CAPACITOR VALUES ARE IN MICROFARADS.

2 P.C. BOARD SIAS764
3 SCHEMATIC gIE69g5

RESISTOR Values are in ohms, $1 / 4 \mathrm{w}, 10 \%$ capacitor values are in microfanads

2 P.C. BOARD SIA5764.
3 COMPONENT LAYOUT 20a260日.

NOTES:

1. UNLESS OTHERWISE SPECIFIEO

RESISTOR YALUES AREIN OHMS I/4 WIO\%
CAPAGITOA VALUES ARE IN MICROFARADI
2. P, C. BOARO SIAS日0日
3. SCHEMATIC 9IB7O4B

notes

1. UNLE: OIHERWIAE sPECIFIEO

RESISTOR VALUES ABEIN OHNS $1 / 4$ m 10%
CAPACITOR VALUES ABEIN UICROFARADS
2. P. C BOAROSIA5日O日
3. COMPONENY LAYOUT 2OA2GSO

NOTES

1. UNLESS OTHERWIAE SPECIFIEDRESISTOR RESISTOR VALUES AREIN OHMS $1 / 4 \mathrm{~W} 10 \%$ CAPACITOR VALUES ARE IN MICROFAROS.
2. P.C. BOARO SIASEI7-02
3. SCHEMATIC 9IA7109
4. USE JIOTOASSEMGA2SE2 PLATES TO PC. BOARD SIASgIT
GEFOREANYCOMPONENTS AREMOUNTED.
5. SQLDER GND. END OF G3DI, GRJOI BREOZ TO TOP SIDE GROUND PLANE.

NOTES:

1. UNLESS OTHERWISE SPECIFIED RESISTOR

VALUES ARE IN OHMS $1 / 4 \mathrm{w} 10 \%$
CAPACITOA VALUES AREIN MICROFARADS
2. P.C. BCARD SIA58I7
3. COMPONENT LAYOUT 20A2G98

notes：
1．UNLESS OTHERWISE SPECIFIED
RESISTOR VALUES ARE OHMS $1 / 4 \mathrm{~W} 10 \%$
CAPACITOR VALUES ARE INMICROFARADS
2．P．C．BOARD SIAS692－05
3．SCHEMATIC 91日6日73
4． $\mathrm{Y} 501=\frac{\mathrm{Fe}-74.000 \mathrm{MHz}}{16} 130400341$
3．INSTALL LSOG LSOT LSOI a LSOG 1／16＊OFF 日RD

notes:

1. DNiESS Otile helse specifieo
fesistor values abe in ohms $1 / 4 \mathrm{w} 10 \%$
capacitor valueg ahe in michofahads.
2.P.C. 日CABD SIAS692-06
2. COMPONENY LAYOUT $20 A 2560$

HOTES:

I. UNLESS OTHERWISE SPECIFIED

RESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W}, 10 \%$ CAPACITOR VALUES ARE IN MICROFARAOS.
2. P.C. BGARO SIAS72I REV. -
3. SCHEMATIC SIE6914 REV E
4. H PUT 26 BUS WRE THROUGH HOLES IN INDUCTOR AND SOLDER. HEAT FROM TOP OF BOARD ONLY. BE SURE SOLDER FLOWS THROUGH.
6. SEE ASSEMBLY INSTRUCTIONS FOR 2OA2578.
7. FILL ALL UNUSED HOLES WITH SOLDER.
8. LENGTH OF PINS IN IC 40 SHOULD EE 5/32.

											家							
					COMPONENT LAYOUT RCVR BALANCED MIXER/74 MHz I.F.													
					TOR, FRACT. $\pm 1 / 82 . \quad \mathrm{xX} \pm .030, . \mathrm{xxX}=.010_{2} \quad< \pm 1 / 2{ }^{\circ}$													
					Ow	GM				5.17.76		Scale:						
					CRK	FXY				10								
	N	?	-	I-			,	0	1			∞		EN	POH	$11.50 N T$		

HOTES:

1. UNLESS OIHERWISE SPECIFIED

RESISIOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W}, 10 \%$
capacitor values are ith microfarads
2. COMPONENT IAYOUI $20 A 257 \theta$ REV. K
3. PC board 51A572I REV. -11,-21

hotes

1. UNLESS OTHGRWISE SPECIFIED

2. SCHEMATIC DIETI94.
3. REMOVE O Je SCREW AND THSIALL IHAEADED CORE AFTER
[5] CUT CS TERMINAL TO GEEN SOLDERED IO P.C BOARD,
NYION
(37) SIOUIDER

L4-t7 mounting
$6 \boldsymbol{\Delta}=\operatorname{rotor}(t)$ cn $\subset 3, C 13, c 18, c 20$.

NOTES:

I. UNLESS OTHERWISE SPECIFIED
aLL RESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W}, 10 \%$
AND CAPACITOR VRLUES ARE IN MICROFARADS.
2. COMPONENT LAYOUT 2OB2762
3. P.C. BCARD 51B5893

NOTES：
1．UNLESS OTHERWISE SPECIFIED
RESISTOR VALUES ARE IN OHMS， $1 / 4 \mathrm{w}, 10 \%$
CAPACITOR VALUES ARE IN MICROFARADS．
2．PC．BOARD SIASEAI
3．SCHEMATIC 918 6879

4．\triangle SOLDER RESISTOR LEADS ON
BOTH SIDES OF PC．SOARD．
5．$*$ FREQUENCY DEPENDENT PARTS

	C813	
ITEM	4.735	MONAURAL
ITEM 2	47／20	COMPOSITE

					DW			GM				9－1		11－75	Scalit FULL						
					CHK			FXY				16S		P75	2042548		L？				
	工	－	HI	工		\bigcirc	4.		山	O	\checkmark			∞			$<$	INO	Lesap．	＇i 16	675

notes:

NOTES:

1. UNLESS OTMERWISE SPECIFIED, ALL RESISTOR VALUES ARE

IN OHMS, $1 / 4$, 10%. CAPACITOR VALUES ARE IN MICROFARADS.
2. PC. BOARD SIA 5625
3. SCMEMATIC 91 B6734

notes

1. umiess orherwise specified aesistion value are in ohms, $1 / 4$ w, 10% capacitor values are in michofagads.
2. P.c. board bias62s

3 component iayout 2042500
4 Sensitivity preset 100 ohms nominal
b. ns denotes no sighal de voltages
6. S denotes wax signal ide voltagei

NOTES:

```
UNLESS OTHEWISE SPECIFIED
RESISTOR YALUES ARE IN OHMS, 1/4 W, 10%
CAFACITON VALUES ARE IN MICROFARADS.
PC. BOARD SIASE27, REV.
SCHEMATIC 91:67E7
+- DENOTES 2C1400-1) INDUCTOA
```


notes.

1. UNLESS OTMEWISE SPECIFIEO ALL RESISIOR values abe in ohms, $1 / 4 \mathrm{w}, 10 \%$ ano
capacitor values are in microfaragos
2. RC BOARD SLA5627
3. COMPONENY LAYOUT 2082496

notes:

b UNLEAB OTHEREISE SPECIPIED HEAIATOR valuEs ARE IM OHUB, $1 / 4 \mathrm{~m}, 10 \%$. capacison values ant in uichofarain.
2. PC mangs alatese
3. SCMEDATIC 91A8721

MOTES:
I. UMLESE OTMEAWISE SPECIFIED

RESISTOR Values ane IM ONEM, $1 / 4 \mathrm{w}, 10 \%$.
camcton valuls are in wicnoparadg.
2 PC moano alatase
3. Con Ponewt Layout $20 A 2481$
4. MATS OUTIEE PC. Hoant ane ghown ron

component item no.	$\begin{aligned} & \text { SIOCK } \\ & \text { LOCA } \end{aligned}$	manufacturer Part number	COMPONENT description	ouAntity PER	UM	UNI I SALES PRICE	$\begin{aligned} & \text { IOIAL } \\ & \text { SALES PRICE } \end{aligned}$
3390150	2722	MV-5254	LED GREEN	1	EA	1.31	1.37
3600145	2721	1 N4, 54	DIO IN4,54 25V 4NS SI 0035	2	EA	. 16	. 32
3600160	2744	1N4731A	dio zinataia 4.3 V In 5x alay	1	EA	1.26	1.26
3600178	2744	1N4733A	dio linctuba s.iv in 5x alay	1	EA	1.09	1.09
3600186	2744	1N4734A	010 LIN4734A 5.6V 1H 5x Alay	1	EA	1.26	1.26
3600236	2744	1N4745A	OID 2IN474sA L6V 1W 5\% Alay	1	EA	. 42	. 42
3610003	2721	1002	DIO 1002 200V IA SI 0039	4	EA	. 39	1.56
3610045	2744	5082-2835	dio 5yer-2835 fast	1	EA	2.24	2.24
3610094	2721	MDA-980-2	OIO MOA-980-2 loov bridge ila	1	EA	7.11	1.11
3610136	2744	My- 840	DID VHV-840 030V 90-100PF DOT	1	EA	3.33	3.33
3630027	2721	2N2924Lfs	XT NS 2 2924LFS.2H160MO25V.1A7P	2	EA	. 54	1.08
3630035	2721	2N3053	XY NP2N3053 05hioomotov.7A	1	EA	1.47	1.47
3630043	2721	2N3054	XT NP 2 N 3054 25no30k090VO2A	1	EA	2.80	2.80
3630076	2744	2N3563	XT NS2N3563 . 2 W 600 MO 30 V 50 M 2 P	1	EA	. 49	. 49
3630092	2744	2N3640	XT PS2N3640 . $2 \mathrm{HSOOHOL2V8OM3.5P}$	1	EA	2.28	2.28
3630159	2744	2N3819	Xt NF 2 N3819 .4H 025v20m	1	EA	. 74	. 74
3630167	2744	2N3820.	XT PF 2 N 3820 -4H 020V15M	1	EA	1-51	1.51
3630191	2744	2N4937	XT PP 2 N 4037 01n060M060VOIA	1	ea	1.54	1.54
3630209	2744	2 N 405 O	X1 PS2N4058 - 4 H O 0 30V30M	1	EA	. 46	-46
3630241	2744	2N4420	XV NP 2 N 442 B 3.5n750MOSSV.42A	- 1	EA	4.94	4.94
3630308	2721	2NS 179	XI NS2NSI79.2H900H020V50MIP	1	EA	2.38	2.38
3630316	2144	2N5293	XT NP2N5293 36w800k0日OVO4A	1	EA	1.73	1.73

805 968-9621

	COMPONENI ITEM NO．	$\begin{aligned} & \text { STOCK } \\ & \text { LOCA } \end{aligned}$	MANUFACIURER Part NUMBER	CDMPONENT DESCRIPIION
	3630399	2743	3Ni40	XI NF3N140 ．4H O2OV5OM
	3640018	2744	A－400	XI NSA400．2H0056015V25M
	3640109	2744	D1－12B	XI NPDI－12B 5．8H866M036V．25A
	3640133	2744	DMS－12B	XT NPDM5－12B 29H 036V02A
1	3640141	2744	OM10－12日	XI NPDM10－12B 50W 036V04A
（	3640182	2713	MJ－2955	XT PPMJ2955 115H2．5M060V15A
	3650116	2743	HC1723CL	RGLTR TYPE 1723 VARV ．15A 632
1	366000 B	2812	SN72741P	16 UATGIP OPAMP GEN COMP
，	3660024	2743	SN7274日P	IC UATHEP OPAMP UNCDMP
	3660297	2743	SN74日6N	IC SN7486N OU 21 EXCL OR
	3680170	2713	SCL 4020AE	IC SCLGO20AE 14 STAGE BINCT
1	3730173	2743	LM－318N	IC LH3IBN OPAMP HISPEED
	3730199	2743	LM－324N	IC LH324N DPAMP SNGL SUPL
1	3730322	2143	MCI 350P	IC HC1350P OPAHP
	3730348	2143	MC1355P	IC HC1355P AMP FH／IF
	3730309	2743	MCIS90G	IC HC 1590 G AMP VIDED

$\begin{gathered} \text { QUANTIYY } \\ \text { PER } \end{gathered}$	UM	UNIT SALES PRICE	TOTAL SAIES PRICE
1	EA	－ 4.17	4.17
1	EA	6.62	6.62
1	EA	21.18	21.18
1	EA	49.70	49.10
1	EA	71.05	71.05
1	EA	2.52	2－52
2	EA	2.66	5.32
1	EA	． 83	． 83
1	EA	1.19	1.19
1	EA	1.02	1.02
I	EA	3.50	3.50
1	EA	6.48	6.48
1	EA	1.68	1.68
1	EA	2.63	2.63
1	EA	3.85	3.85
1	EA	16．28	16.28

805 968-9621

QUANIITY
PER
UM

1 EA

UNII SALES PRICE
6.41
1.53
1.79
53.74
43.34
51.31
18.48
2.79
5.81
7.98
35.00

JOIAL SALES PRICE 6.41
7.65
8.95
53.74
43.34
51.31
18.48
2.79
5.81
7.9月
35.00
805 988-9621

QUANIITY PER	UM	UNIT	TUTAL
SALESPRICE	SALES PRICE		

PARENI IIEM NO 905I228

moSeley as Sociates inc III CASTILIAN DRIVE
lII CASTILIAN ORIVE
GOLEIA CA 93117
GOLETA CA
80596921

QUANTITY	
PER	
UM	
1	EA
1	EA
1	EA

UNIT	IUIAL
SALES PRICE	SALES PRICE
37.50	37.50
37.50	37.50
37.50	37.50

Date	17 Aur 1983
Order 而	3392
Technician	con

Customer	KHYX	
Tx Serial	39225	
Rx Serial \#	40699	
Frequency	950.125	MHz

Transmitter Meter Readings
Program
MPX Chan. 1 @ 26 kHz Chan. 2 @ 67 kHz
AFC
FRD PWR 6.0 Watts RFL PWR
$+V D C$
Reference Oscillator
H. F. Divider
I. P. A. Drive

Final Current 2 amp max

$\begin{array}{r} 0 \\ \hline 10 \\ \hline \end{array}$	dB top
	bottor
15	ttom
15	ottom
0	op
0	ttom
12.5	ttom
14.5	ottom
13.0	ottom
$\begin{array}{r} 20.5 \\ 11.5 \end{array}$	ottom

Power Supply to be set using a DVM
Transmitter
Recerver
12.5
-12.5 VDC

PCL-505 System Performance
Freq. (Hz) Response Distortion (\%)
30
50
400
1,000
5,000
10,000
15,000

-.4 dB	.21
-.4 dB	.13
0	.07
0	dB
0	.05
+.3 dB	.07
0	dB

System Noise

Receiver Meter Readings
$+V D C$
Signal (no input)
Program @ 100% mod. MPX 26 kHz

67 kHz
Level for 45 dB SNR:

12.5	motrom
	bottom
$\stackrel{1}{0}$	
10	bottom
15.9	tt
-90	Bm

RF Pم_Levels

FMO	$\frac{25}{15} \mathrm{MW} \min$	
MULT-DRIV	$\frac{180}{6.0}$	$120 \mathrm{MW} \min$
FINAL A MP	5 Wmin	

Receiver Signal Meter Calibration

Microvolts

5	$\frac{1.8}{1.9}$
10	$\frac{2.5}{7.0}$
20	9.1
100	11.0
200	13.0
500	14.0
1,000	14.0

UItimate SNR: \qquad $d B$
SNR: \qquad dB with noise reduction circuit active
Level for 60 dB SNR: _ -82 dBm
Squelch set between $15-20 \quad 20 \quad \mu \mathrm{~V}$
These readings were noted during final electrical test of the equipment and are intended
for reference purposes. Readings may vary with component replacement or aging,
adjustment, $R F$ terminations, equipment installation, or path conditions.
Rev. 12 May 1983
ph

