

The Tektronix Circuit Computer has been designed to compute directly problems involving resistance, inductance, capacitance, frequency and time. The computer consists of three circular decks, containing seven scales, and a hairline indicator.

The primary design objective is to provide a means of quick computation of time values from other circuit dimensions.

Contents

- 1. Capacitive Reactance
- 2. Inductive Reactance
- 3. Resonance
- 4. RC Time Constant and Risetime
- 5. L/R Time Constant and Risetime
- 6. Filter Cut-off Frequency
- 7. Risetime
- 8. Discussion of Risetime and Time Constant

Generally-accepted symbols are used in the discussion, but note that we use:

$$au=$$
 Time Constant $=$ RC or $\frac{L}{R}$

 $au_{R} =$ Risetime; defined on page 8

Copyright 1961 by Tektronix, Inc., Portland, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced without permission of the copyright owner.

Additional copies of this publication may be obtained from your Tektronix Field Engineer or Tektronix Representative, or from Tektronix, Inc., P.O. Box 500, Beaverton, Oregon. The price per copy is twenty-five cents.

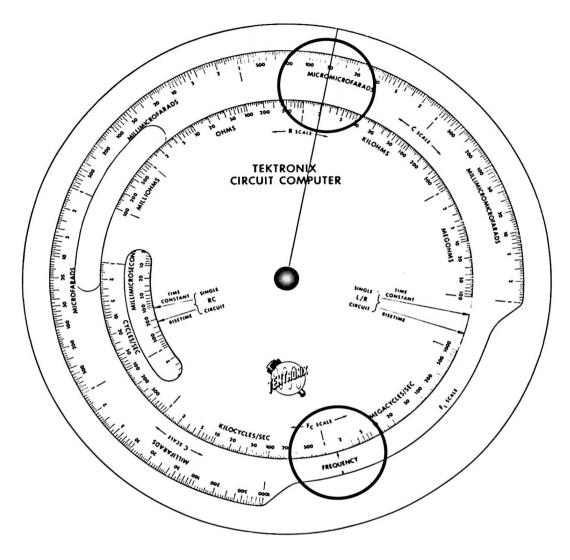


Fig. 1

1. Capacitive Reactance

$$X_C = \frac{1}{2\pi fC}$$

To find reactance X_C , of a capacitor C, at frequency f:

- a. Set the arrow marked FREQUENCY (middle deck) to the frequency on the F_C scale (top deck).
- b. Set the hairline indicator over the capacitance on the C scale (middle deck).
- c. Read the reactance X_C, under the hairline on the R scale (top deck).

Note that f must be the frequency of a **sinusoidal** wave. Any of the three variables in the equation may be solved using these three scales.

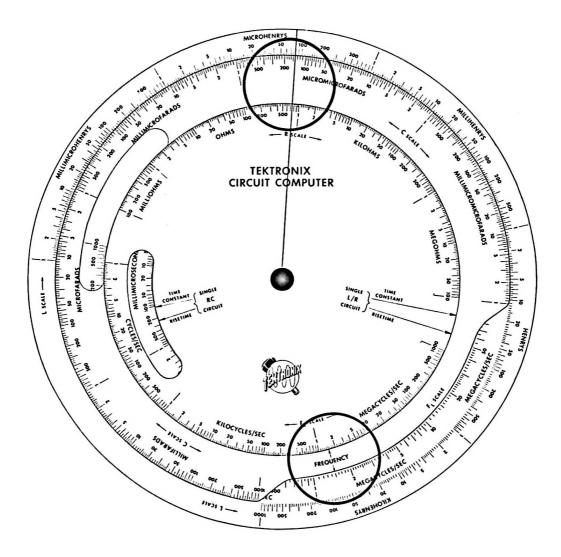


Fig. 2

2 Inductive Reactance

$$X_L = 2\pi f L$$

To find reactance X_L , of an inductance L, at frequency f:

- a. Set the arrow marked FREQUENCY to the frequency on both the F_L (bottom deck) and F_C (top deck) scales.
- b. Set the hairline indicator over the inductance on the L scale (bottom deck).
- c. Read the reactance X_L , under the hairline on the R scale.

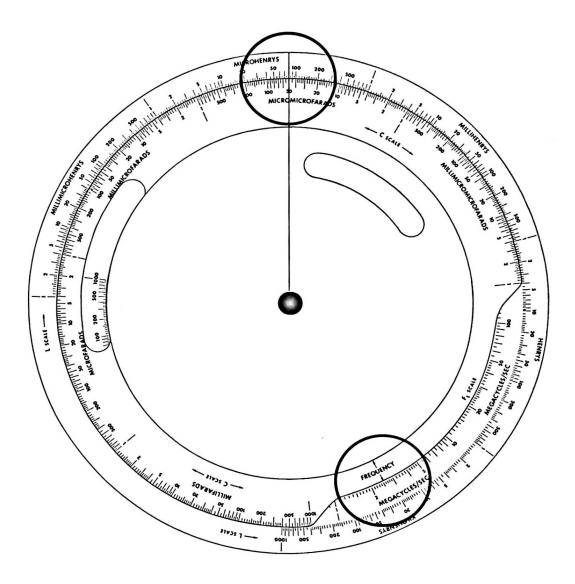


Fig. 3

3. Resonance

$$f_R = \frac{1}{2\pi V LC}$$

To find resonant frequency f_R , of a series-resonant circuit consisting of an inductance L, and a capacitance C:

- a. Set the inductance on the L scale opposite the capacitance on the C scale.
- b. Read the resonant frequency $f_{\rm R}$, on the $F_{\rm L}$ scale opposite the Frequency arrow.

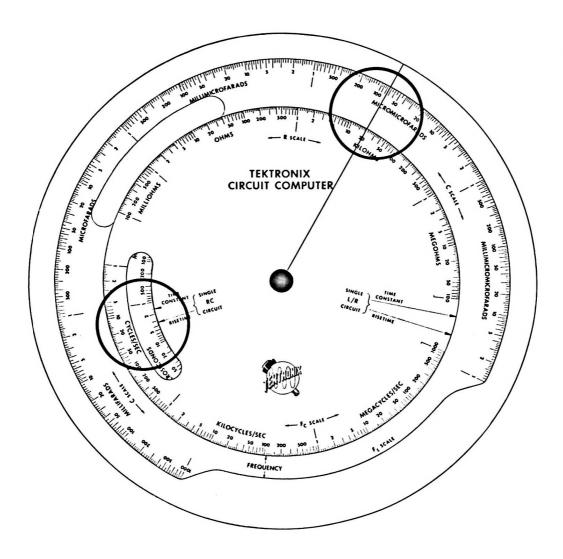


Fig. 4

4. RC Time Constant and Risetime

$$\tau = RC$$
 $\tau_R = 2.197 RC^*$

- a. Set the capacitance on the C scale opposite the resistance on the R scale using the hairline indicator.
- b. Read the RC time constant and the risetime on the TC scale (middle deck) through the window in the top deck, opposite the appropriate arrows.

^{*}See page 7 for discussion of risetime and time constant.

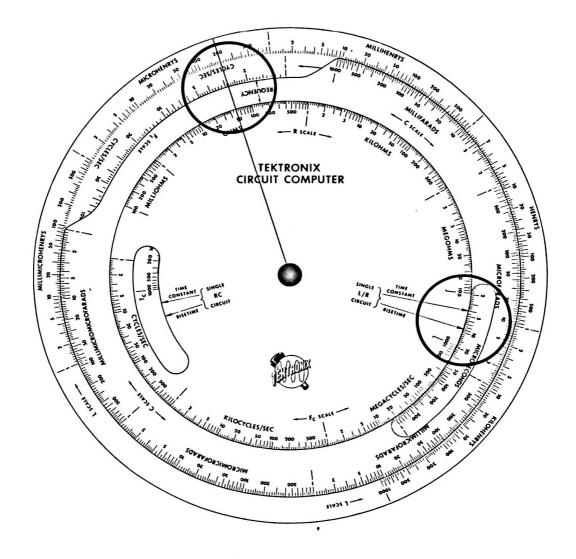


Fig. 5

5. L/R Time Constant and Risetime

$$\tau = \frac{L}{R} \qquad \qquad \tau_R = 2.197 \frac{L^*}{R}$$

To find the time constant or the risetime of a circuit consisting of an inductance L in series with a resistance R.

- a. Set the arrows for the L/R time constant and risetime to the window in the middle deck.
- b. Set the resistance on the R scale opposite the inductance on the L scale using the hairline indicator.
- c. Read the L/R time constant and risetime on the $\tau_{\rm L}$ scale (bottom deck) through the window in the middle deck opposite the appropriate arrows on the top deck.

^{*}See page 7 for discussion of risetime and time constant.

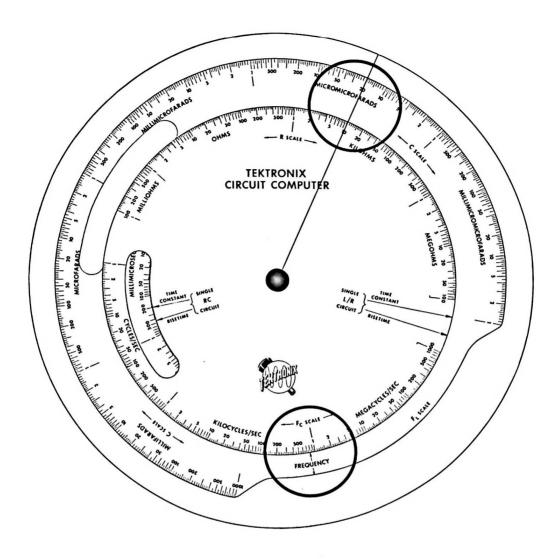


Fig. 6

6. Filter Cut-Off Frequency

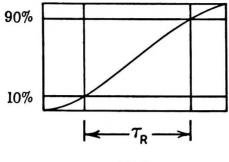
$$f_{CO} = \frac{1}{2\pi RC}$$

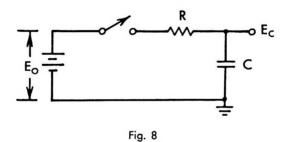
To find the cut-off frequency f_{CO} (3-db-down point) of a circuit consisting of a resistance R, and a capacitance C, connected as a mid-series section of a low-pass or a high-pass filter:

- a. Set the resistance on the R scale opposite the capacitance on the C scale using the hairline indicator.
- b. Read the cut-off frequency f_{CO} opposite the Frequency arrow on the F_{C} scale.

7. Risetime

For most pulse work, risetime τ_R is defined as the time required for the instantaneous amplitude to rise from 10% to 90% of its maximum value.




Fig. 7

The overall risetime of a system can be computed to useful approximation from the risetimes of its individual components by the formula:

$$\tau_{R} = \sqrt{\tau_{R1}^2 + \tau_{R2}^2 + \tau_{R3}^2 \dots}$$

8. Discussion of Risetime and Time Constant

Consider the simple low-pass filter shown in Fig. 8.

After the switch is closed, the voltage E_C will approach E_O according to the function:

$$E_{C} = E_{O} (1 - e^{\frac{-1}{RC}})$$

as shown in Fig. 9.

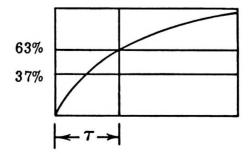


Fig. 9

The time constant of a circuit is defined as the time required for the instantaneous voltage to rise from 0 to 63.2% ($1-\frac{1}{e}$) of its maximum. Risetime is defined here as the time it takes the instantaneous voltage to rise from 10% to 90% of its maximum.

Defining risetime as the time $(t_2 - t_1)$ it takes for E_C to rise from 0.1 to 0.9 volts, we may write:

$$1 - e^{\frac{-t_1}{RC}} = 0.1$$

$$1 - e^{\frac{-t_2}{RC}} = 0.9$$
(1)

$$\frac{1}{e^{\frac{t_1}{RC}}} = 0.9$$

$$\frac{1}{e^{\frac{t_2}{RC}}} = 0.1$$
 (2)

$$e^{\frac{t_1}{RC}} = \frac{1}{0.9} = 1.111...$$
 $e^{\frac{t_2}{RC}} = \frac{1}{0.1} = 10$ (3)

Solving for $\frac{t_2-t_1}{RC}$ we take the log of equations (3) to the base e:

$$\log_{e} e^{\frac{t_{1}}{RC}} = \log_{e} 1.111 \qquad \log_{e} e^{\frac{t_{2}}{RC}} = \log_{e} 10 \qquad (4)$$

$$\frac{t_1}{RC} \log_e e = \log_e 1.111$$
 $\frac{t_2}{RC} \log_e e = \log_e 10$ (5)

Since $\log_e e = 1$:

$$\frac{I_1}{RC} = \log_0 1.111$$
 $\frac{I_2}{RC} = \log_0 10$ (6)

Subtracting we get:

$$\frac{t_2 - t_1}{RC} = \log_e 10 - \log_e 1.111 = \log_e \frac{10}{1.111} = \log_e 9 = 2.197225$$
 (7)

$$\frac{T^{R}}{RC} := \log_{\bullet} 9 = 2.197225 \tag{8}$$

$$T_R = 2.197225 \text{ RC}$$
 (9)

Or,

$$\tau_{\rm R} = 2.1972~{\rm RC}$$

This relationship can be demonstrated for L/R current risetimes as well.

The frequency response of the low-pass filter shown in Fig. 8 will be down 3 db when:

$$X_{C} := R$$

$$R = \frac{1}{2\pi f C}$$
(10)

Solving for RC:

$$RC = \frac{1}{2\pi f} \tag{11}$$

Substituting in (9):

$$\tau_{R} = 2.1972 \frac{1}{2\pi f}$$

$$\tau_{R} = \frac{.349}{f}$$
(12)

And

$$f = \frac{.349}{\tau_R} = \frac{K}{\tau_R}$$

Note that K, the translation factor, was determined for sine waves as 0.349; for other waveforms K would fall between 0.34 and 0.39.

Tektronix, Inc., P.O. Box 500, Beaverton, Oregon Telephone: Mitchell 4-0161 TWX—BEAV 311 Cable: TEKTRONIX AN OREGON CORPORATION

Field Engineering Offices

ALBUQUERQUE* Tektronix, Inc., 509 San Mateo Blvd. N. E., Alb	uquerque, New MexicoTWX—AQ 96 AMherst 8-3373
	Southern New Mexico Area: Enterprise 678
ATLANTA* Tektronix, Inc., 3272 Peachtree Road, N. E., Atl	anta 5, GeorgiaTWX—AT 358
PAITINOPPE Tallian's Inc. 704 Val. Band Tanana 4 Mar	Huntsville, Alabama Area: WX 2000
BALTIMORE* Tektronix, Inc., /24 York Road, Towson 4, Ma	rylandTWX—TOWS 535
BUSION* Textronix, Inc., 442 Marrell Roda, Lexington A	5, New YorkTWX—WMSV 2
CHICAGO* Tektronix, Inc., 701 Mary are Drive, Boridio 2.	Illinois PK RG 1395 TAlcott 5-6666
CIEVELAND Tektronix Inc. 1503 Brookpark Road Clevelar	nd 9, Ohio TWX—CV 352 FLorida 1-8414
CELTERIAD Textionix, Inc., 1505 blookpark Road, Cierciai	Pittsburgh Area: ZEnith 0212
DALLAS* Tektronix, Inc., 6211 Denton Drive, P. O. Box	35726, Dallas 35, TexasTWX—DL 264 FLeetwood 7-9128
	on 39, OhioTWX—DY 363 AXminster 3-4175
	22, ColoradoTWX—DN 879 SKyline 7-1249
	Salt Lake Area: Zenith 381
DETROIT* Tektronix, Inc., 27310 Southfield Road, Lathrup	Village, MichiganTWX—SFLD 938 Elgin 7-0040
ENDICOTT* Tektronix, Inc., 3214 Watson Blvd., Endwell, N	lew YorkTWX—ENDCT 290Ploneer 8-8291
GREENSBOROTektronix, Inc., 1838 Banking Street, Greensbor	ro, North CarolinaTWX—GN 540 BRoadway 4-0486
	Honolulu 14, HawaiiTelex: MHU 0093 Phone: 53975
	27, TexasTWX—HO 743 MOhawk 7-8301, 7-8302
	anapolis 5, IndianaTWX—IP 361X Liberty 6-2408, 6-2409
KANSAS CITY Tektronix, Inc., 5920 Nall, Mission, Kansas	TWX—KC KAN 1112 HEdrick 2-1003
LOC AMORIES AREA	St. Louis Area: ENterprise 6510
LOS ANGELES AREA	A 22 C-1/4 TWY NTB 2055 BAUMON 2 0408
	os Angeles 22, CaliforniaTWX—MTB 3855RAymond 3-9408 aliforniaTWX—VNYS 5441
	Los Angeles 49, California GRanite 3-1105
	A 6698 From Los Angeles telephones call BRadshaw 2-1563
	Ainneapolis 22, MinnesotaTWX—MP 983 533-2727
	O, Montreal 28, Quebec, Canada
NEW YORK CITY AREA	.,
*New York City and Long Island served by:	
Tektronix, Inc., 840 Willis Avenue, Albertson, L.	I., New YorkTWX—G CY NY 1416 Ploneer 7-4830
Westchester County, Western Connecticut, Hudson River Valley served I	by:
Tektronix, Inc., 1122 Main Street, Stamford,	ConnecticutTWX—STAM 350 DAvis 5-3817
*Northern New Jersey served by:	
	ew JerseyTWX—UNYL 82 MUrdock 8-2222
	do, FloridaTWX—OR 7008
	a 50, PennsylvaniaTWX—PH 930
	sdale, ArizonaTWX—SCSDL 52 WHitney 6-4273 regon
	osie, New York TWX—POUGH 5063 GRover 1-3620
	Diego 10, CaliforniaTWX—SD 6341 ACademy 2-0384
SAN FRANCISCO BAY AREA	orego to, comorma
	ette, CaliforniaTWX: LAF CAL 1639 YEllowstone 5-6101
	and, Berkeley, Richmond, Albany and San Leandro Clifford 4-5353
	, California TWX—PAL AL 112 DAvenport 6-8500
	56, WashingtonTWX—SE 47 CHerry 3-2494
SYRACUSE* Tektronix, Inc., East Molloy Road and Pickard	
	TWX-SS 423 Glenview 4-2426
	ple, Ontario, Canada Toronto, BAldwin 5-1138
WASHINGTON D. C.*Tektronix, Inc., 9619 Columbia Pike, Annand	ale, Virginia TWX—F CH VA 760 CLearbrook 6-7411
*ALSO REPAIR CENTERS	Norfolk, Portsmouth and Hampton, Virginia Area: Enterprise 741