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T HE SEARCH for simple abstract 
techniques to be applied to the design 

of switching systems is still, despite 
some recent advances, in its early stages. 
The problem in this area which has been 
attacked most energetically is that of the 
synthesis of efficient combinational that 
is, nonsequential, logic circuits. 

While this problem is closely related to 
the classical one of simplifying logical 
truth functions, there are some significant 
differences. To each logical truth func- 
tion, or Boolean algebraic expression, 
there corresponds a combinational circuit 
which may be constructed from a given 
set of appropriate components. How- 
ever, minimization of the number of ap- 
pearances of algebraic variables does not 
necessarily lead to the most economical 
circuit. Indeed, the criteria of economy 
and simplicity may vary widely for dif- 
ferent ‘types of components. A general 
approach to circuit synthesis must there- 
fore be highly flexible. What is perhaps 
most to be desired is a simple and rapid 
technique for generating a variety of 
near-minimal algebraic forms for the 
designer’s inspection. 

Boolean algebra,’ or the calculus of 
propositions, is a basic tool for investiga- 
tion of circuits constructed from 2-valued 
devices. Its direct application to syn- 
thesis problems is, nevertheless, not com- 
pletely satisfactory. The designer em- 
ploying Boolean algebra is in possession 
of a list of theorems which may be used 
in simplifying the expression before him; 
but he may not know which ones to try 
first, or to which terms to apply them. 
He is thus forced to consider a very large 
number of alternative procedures in all 
but the most trivial cases. It is clear 
that a method which provides more in- 
sight into the structure of each problem 
is to be preferred. Nevertheless, it will 
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be convenient to describe other methods 
in terms of Boolean algebra. Whenever 
the term “algebra” is used in this paper, 
it will refer to Boolean algebra, where 
addition corresponds to the logical con- 
nective “or,” while multiplication corre- 
sponds to %nd.” 

The minimizing chart,2 developed at 
the Harvard Computation Laboratory, 
represents a step in the desired direction. 
It makes possible the fairly rapid deriva- 
tion of near-minimal 2-stage forms. By 
a 2-stage form is meant a sum of products 
of the elementary variables, or else a 
product of sums of the elementary varia- 
bles. These expressions may then be 
further reduced by algebraic factoring. 
The chief drawback to this method lies 
in the necessity of writing, and perhaps 
erasing, on a chart that, for n variables, 
contains 2% entries. Thus, we must 
keep track of 1,024 entries for five varia- 
ble problems and 4,096 entries for six 
variable problems. 

E. W. Veitch3 has suggested a method 
whereby results similar to those yielded 
by the minimizing chart can be obtained 
from an array containing only 2n entries 
in a more rapid and elegant manner. 
The map method, which is explained in 
this paper, involves a reorganization of 
Veitch’s charts, an extension to the use of 
3-dimensional arrays, and some special 
techniques for diode and relay circuits. 

Maps 

Let the active and ina&ive conditions 
of the inputs to a combinational circuit 
be designated by assigning the values 1 
and 0 respectively to the associated alge- 
braic variables. An assignment of a 
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Fig. 1. Graphical representation of the input 

conditions for two variables 

(A) Along two axes 
(B) Along a single axis 

simultaneous set of values to the n 
variables for a given problem will be 
called an input condition. There are 2n 
possible input conditions. 

For example, with only two variables, 
there are four input conditions. They 
may be represented graphically by the 
four squares in Fig. l(A). Here, the 
values of variables A and B have simply 
been plotted along two perpendicular 
axes. It should be noted that squares 
which are adjacent, either horizontally 
or vertically, differ in the value of only 
one of the variables. 

If  Fig. l(A) is cut along its horizontal 
midsection and the bottom half is rotated 
into line with the top, as in Fig. l(B), 
then a representation of the input condi- 
tions for two variables is obtained along 
a single axis. Let us consider the squares 
at opposite ends of the row to be termed 
adjacent, as if it were inscribed on a 
cylinder. Then, as before, adjacent 
squares differ in the value of only one 
variable. Conversely, if two iriput condi- 
tions differ in the value assigned to just 
one of the variables, they are represented 
by adjacent squares. 

If  one also makes use of the vertical 
axis, one can represent the input condi- 
tions for three variables as in Fig. 2(A), 
and for four variables as in Fig. 2(B). 
In the latter case, opposite ends of each 
row or column should be considered 
adjacent, as though the figure were in- 
scribed on a torus. 

The labels on the diagrams may be 
simplified as shown in Fig. 3. The rows 
or columns within a bracket are those in 
which the designated variable has the 
value 1, while it is 0 elsewhere. 

A combinational circuit of the type 
under consideration has a 2-valued output 
which is a function of the input condi- 
tion. The synthesis problem may be said 
to begin with the specification of this 
functional dependence. Such informa- 
tion may be represented on a map as 
follows: Place a 1 in each square which 
represents an input condition for which 
the output is to have the value 1. The 
other squares may be imagined to contain 
zeroes. 

Synthesis of 2-Stage Forms 

Consider the function mapped in 
Fig. 4(A). Its algebraic realization is 
the product A’BC’D, where the primes 
indicate negation or complementation, 
for A’BC’D= 1 if, and only if, A =0, 
B=l, C=O, and D=l. 

Let us define a complete product to be 
a product in which each of the variables 
appears as one factor, either primed or 
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not. Then any function whose map con- 
tains a single 1 may be represented by a 
single complete product. Each factor is 
primed if, and only if, it has the value 0 
at the square in question. Because each 
square that contains a 1 gives rise to a 
product, such squares will be called p- 
squares. 

If  the map of a function contains k p- 
squares, then the function may be repre- 
sented by the logical sum of the corre- 
sponding k complete products, each se- 
lected by this rule. This form of represen- 
tation is the complete disjunctive normal 
form of the calculus of propositions. It 
is often the starting point for algebraic 
simplihcation. 

- However, it is usually possible to 
write down a more economical representa- 
tion than a complete normal form by 
direct inspection of a map. Consider the 
function whose map is shown in Fig. 4(B). 
Its complete disjunctive normal form is 
ABfA’B. This is easily reducible alge- 
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Fig. 4. Maps of two functions 
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braically : AB+A’B=B(A+A’)=B. 

Now note that the p-squares on the map 
are precisely that set for which B = 1. 

Let us detine a subcube to be the set 
of all squares on a map over which certain 
of the variables have fixed values. A 
subcube formed entirely of p-squares 
will be called a p-subcube. 

Each p-subcube may be regarded as 
the map of a product formed according to 

the rules : 

1. The factors of the product are those 
variables whose values are fixed within the 
subcube. 

2. A factor is primed if, and only if, its 
value within the subcube is 0. 

Fig. 5 shows some typical p-subcubes 
and the corresponding products. Each 
p-subcube may be thought of as a simply 
connected square or rectangular group of 
p-squares, if it is recalled that opposite 
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ends of columns and rows are adjacent. 
I f  m variables are not fixed in a given 

subcube, it is said to be m-dimensional, 
and it contains 2n squares. A single 
square is thus a zero-dimensional subcube. 
Note that the larger p-subcubes corre- 
spond to products having fewer factors, 
since fewer variables are fixed in them. 

It is now easy to see how to obtain 
economical 2-stage forms from maps. 
The rules are: 

1. Choose a set of p-subcubes which in- 
cludes every p-square at least once. In 
general, it is desirable to make the selected 
subcubes as large and as few in number as 
possible. 

2. Write down the sum of the products 
which correspond to the selected P-sub- 
cubes. This gives the desired expression. 

As an example of this procedure, we 
can, for the function mapped in Fig. 6, 
make the selection 

f =AC’+A’CD+BCD 

An alternate procedure is possible that 
leads to a product of sums, that is, a con- 
junctive normal form instead of a sum of 
products. First, this procedure is used 
to obtain an expression for the negative 
of the function mapped. This is done by 
considering the empty squares to be the 
new p-squares. In the case of Fig. 6 

f’=A’C’+CD’+AB’C 

The function desired, which is ,the nega- 
tive of this, is now obtained by the:simul- 
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Fig. 5. A number of typical p-subcubes and the corresponding algebraic products 
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Fig. 6. Map of a function 

taneous interchange of primes and non- 
primes, and of multiplication and addi- 
tion signs. 

Thus 

Both of these procedures have been 
proposed by Veitch.3 

Minimal Z-Stage Forms 

In combinational diode circuits, there 
is usually one diode per input lead to 
every stage. For Z-stage circuits, this 
means one diode per appearance of each 
algebraic variable plus one diode per 
product, or per sum, of these variables. 
It is often a simple matter to minimize 
rigorously the number of diodes used in 
such a circuit. 

Consider Fig. i(A). The dotted lines 
correspond to the choice of p-subcubes. 

f=B+AC 

Now note that asterisks are placed in two 
of the p-squares, so chosen that no single 
fi-subcube includes both of them. Hence 
at least two p-subcubes are required. 
Furthermore, the selected p-subcube con- 
taining each asterisk is of maximum pos- 
sible dimensionality. Hence each of the 
corresponding products contains the 
minimum number of factors. 

The same kind of proof must be carried 
out for the alternate procedure, as illus- 
trated in Fig. i(B). Here we have 

j’=A’B’+B’C’ 

f=U+B)(B+C) 

This is not as good. however, as the pre- 
vious result, which we have now proved 
to be minimal in 

1. Xumber of terms 
2. Appearances of the variables 
3. Diodes 

This proof depends upon the fact that no 

one pair of asterisks lies in the same p- 
subcube. In some cases it may be found 
that only k asterisks can be placed on a 
map in this manner, and yet ‘more than k 
terms are required to represent the func- 
tion. When this occurs, a proof that at 
least kfl terms are necessary can be 
carried through by contradiction. When 
the attempt to associate a p-subcube with 
each asterisk is made, it will be found imT 
possible to include all p-squares in the k 
p-subcubes so selected. 
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Factoring by Inspection 

When circuits are not restricted to the 
Z-stage variety, it is sometimes ‘advan- 
tageous to reduce further the a-stage 
forms by algebraic factoring. It is of 
some importance to show that factoring 
may also be carried out directly by inspec- 
tion of a map. 

For example, the function mapped in 
Fig. 8 is 

j=A’B’+B’C=B’(A’+C) 

Since both the chosen p-subcubes lies 
within subcube 3, the presence of the 
common factor is established by inspec- 
tion. 

Occasionally, observation of the possi 
bilities for factoring will determine the 
selection of subcubes and lead to a better 
circuit than would otherwise be obtained. 
In the case of Fig. 6, the choices 

j=AC’+A’CD+BCD=AC’+CD(A’+B) 
f=AC’+A’CD+ABD=A(C’+BD)+A’CD 

or =AC’+D(A’C+AB) 

lead to equally good 2-stage forms; but 
the former yields the best factored form. 
Inspection of the map indicates that p- 
subcube BCD lies in CD along with A’CD, 

thus providing two common factors, 
while the alternative choice of ABD will 
give only a single common factor in either 
of two ways. When inspecting the map, 
it is not necessary to think of these sub- 
cubes by name as we must in the text, 
but merely to observe their relations, as 
sets of p-squares. 

Even more extensive use of the set 
theoretic union (our +) and intersection 
(our.) relations is possible. Consider 
Fig. 9. Algebraically, we get 

j,A’B’C’D+A’B’CD’+ABC’D+ABCD’ 
=A’B’(C’D+CD’)+AB(C’D+CD’) 
=(A’B’+AB)(C’D+CD’) 

But it can be seen directly that the four 
p-squares form the set which is the inter- 
section of the union of A’B’ and AB and 
the union of C’D and CD’. Thus f= 
(A ‘B’+AB) (C’D+ CD’), as illustrated 
by the dotted lines. 
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Fig. 7. Maps used to minimize a diode circuit 
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Fig. 8. Map of a factorable function - 
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Fig. 9. Set theoretic interpretation of a map 

L‘Don’t-Care” Conditions 

Very often, the output of a circuit is 
subject to less rigid restriction than the 
assignment of a definite value, 0 or 1, for 
some input conditions. The simplest 
such case is that of no restriction at all 
This may occur because the input condi- 
tions in question never are realized in 
practice, or because the output has no 
effect in those cases. We shall designate 
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Fig. 10. Map of an incompletely specified 

function 

such don’t-care conditions by placing the 
symbol d in the appropriate squares. 

It is usually quite simple to make an 
economical assignment of values to the 
d-squares by inspection of a map. Since 
these are at the disposal of the designer, 
it is to his advantage to employ them so 
as to simplify the resulting circuit. 

The best 2-stage form for the function 
in Fig. 10 is 

f  =AC’+BD 

_ obtained by setting the two d’s on the right 

fij= 

fik= 
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Fig. 11. A S-output problem 
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equal to 0, and the other two equal to 1. 
The rule for making such choices is as 

follows: Assign values to the d’s which 
enlarge and combine the necessary @- 
subcubes as much as possible but do not 
make necessary the selection of any addi- 
tional subcubes. 

The ease with which don’t-cares can 
be properly evaluated is one of the major 
advantages shared by the minimizing 
chart, Beitch chart, and map methods in 
varying degree. 

Disjunctive Combination in Relay 
Nets . 

The map method, inasmuch as it yields 
expressions in Boolean algebra, can be 
used to design 2-terminal, series-parallel 
relay contact networks, but not bridge- 
type 2-terminal networks. Hence, many 
Zterminal contact networks designed 
by means of the map method will not be 
minimal in contacts or springs. This 
will be true, in particular, of the sym- 
metric circuits. 4 

However, in the case of complicated, 
multioutput networks, the map method 
may be a very effective tool. Suppose 
that terminal i is a ground, to be con- 
nected through networks fij and fik to the 
output terminals j and K respectively. 
The specif?cations for ftj andfie, which are 
networks on the contacts of relays A, B, 
C, D, are mapped in Fig. 11. If  each 
net is synthesized separately, there 
results the circuit of Fig. 12(A). In 
Fig. 12(B), it is shown how, with a slight 
rearrangement, parts of the upper paths 
to j and k can be combined, as can parts 
of the lower paths. This results in a 
saving of four contacts. 

The second circuit is completely equiva- 
lent to the first, for the transfers on relay 

A prevent any sneak paths between ter- 
minals j and k. While disjunctive com- 
binations of this sort are certainly not 
new to the relay art,5 this section is in- 
cluded to show how they may easily be 
recognized on maps, and hence how they 
play a part in the selection of subcubes. 

Note that the paths ABC’ and A’BC’, 
which give rise to one of the combinations, 
differ by only a prime on A. The corre- 
sponding subcubes in Fig. 11 are seen to 
be related by a simple displacement. 
The same is true for the other pair of fi- 
subcubes. 

A little practice will enable the de- 
signer to evaluate the various possibilities 
for factoring and disjunctive combination 
by inspection of the maps. It will then 
be a simple task to make a good choice 
of p-subcubes. 

Unnecessary Contacts 

It is of interest to note that for any 
given function some of the variables or 
their primes may be unnecessary. That 
is, it is possible to find an algebraic repre- 
sentation of the function in which these 
variables, or negated variables, do not 
appear. Hence the corresponding relay 

Table I. Specifications for a Coded Decimal 

Digit Translator 

Digit 1 2 4 5 Z 0 T  P S 

0........0...0...0...0.....0...0...0...1 . ..I 
1........1...0...0...0.....1...1...0...0 . ..o 
2........0...1...0...0.....1...0...1...0 . ..o 
3........1...1...0...0.....0...1...1...0 . ..o 
4........0...0...1...0.....1...0...0...1 . ..o 
5........0...0...0...1.....0...1...0...1 . ..o 
6........1...0...0...1.....0...0...1...1 . ..o 
7........0...1...0...1.....1...0...0...0 . ..1 
8........1...1...0...1.....0...1...0...0 . ..1 
9........0...0...1...1.....0...0...1...0 . ..l ~- 
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Fig. 13. A translator problem 

contact network will not contain make- 
contacts, or break-contacts, on some of the 
relays. 

For example, the functions in Fig. 11 
are shown on four-variable maps, but 
they may be realized in terms of only 
three variables, as in Fig. 12. Neither D 

nor D’ is necessary. 
In this case, it can be seen at a glance 

that the patterns appearing in the D and 
D’ subcubes in both maps are identical. 
Therefore the output is independent of 
the value assigned to D. This is a case 

Fig. 14. Work sheet for synthesis of the 

: translator 

2 

Fig. 15. The finished translator network 

wherein both the following rules hold: 

1. A function may be represented without 
the appearance of an unprimed variable, 
say D if, and only if, to each P-square in 
subcube D there corresponds an adjacent 
P-square in subcube D’. 

2. A function may be represented without 
the appearance of D’ if, and only if, to each 
P-square in subcube D’ there corresponds 
an adjacent p-square in D. 

Illustrative Example : A Relay 
Translator 

Suppose it is desired to find a relay con- 
tact network to translate coded decimal 
digits from a l-2-4-5 code to a-out-of-5 
code. The five outputs will operate the 
relays 2 (zero), 0 (one), T (two), F (four), 
and S (seven). The required translation 
properties are listed in Table I. The 
unarithmetic representation for zero is 
standard in the 2-out-of-5 code. 

The remaining six input conditions for 
the l-2-4-5 relays are unused or don’t- 
care conditions. However, it is required 
that none of these conditions results in 
operation of zero or two of the five output 

relays. From these specifications, one 
obtains the five maps in Fig. 13. 

At this point, p-subcubes must be se- 
lected, and the desirability kept in mind of 
factoring and disjunctive combinations. - 
The chosen p-subcubes are listed, in 
Table II, where the numbers in paren- 
thesis indicate the order in which they 
were selected. This should be followed 
on the maps in order to see how the terms 
will combine. 

A check on the six d-squares now shows 
that each of them has been taken = 1 on 
at least three of the maps. Hence the 
restriction on unused conditions has been 
satisfied, and no changes need be made 
in Table II. 

The worksheet on which the network is 
planned is shown in Fig. 14. The lines 
drawn between terms designate disjunc- 
tive combinations or factoring; and the 
symbols adjacent to the lines indicate 
which contacts are shared in each case. 
A careful comparison of this worksheet 
with the resulting network, shown in 
Fig. 15, will enable the reader to under- 
stand both. 

Table II. A List of Selected p-Subcubes 

Z T  S 0 F 

(1) 45‘ ........... (2) 45 ......... ..(lO) 1’2’4’5’...........(6) 12 ........... 12’5 
(3) 12’5’........... (4) 12’5...........(12) 25 

(8) 
......... ..(7) 12’5’ 

(5) 1’2 
......... ..(13) 45’ 

.......... (11) 25’ ........... (14) 45 ......... ..(9) 1’2’4’5...........(15) 1’2’4 
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Three-Dimensional Maps 

Up to this point, we have discussed 
functions of no more than four variables. 
If  it is desired to increase the number of 
variables on a map, two possibilities sug- 
gest themselves: 

1. Increase the number of variables 
plotted on each axis. 

2. Use three mutually perpendicular axes 
instead of two. 

Both methods are feasible. If  
method 2 is employed, then for (even) n 
variables, we will have n/2 on each axis. 
This means an array of 2n/z by 2%/Z 
~quare~. However, with more than two 
variables on an axis, the definition of 
adjacence must be extended rather ten- 
uously and subcubes become more diffi- 
cult to recognize. This scheme is like 
the one originally suggested by Veitch.3 

We have chosen method 2, which allows 
a 50-per-cent increase in the number of 

variables without any extension of the 
rules. Thus, for six variables, the meth- 
ods we have described still apply, but 
in three dimensions. 

A suitable framework is shown in Fig. 
16. It consists of four 6-inch square 

plexiglass sheets supported at l-i/2-inch 
- intervals by rods of the same material. 

The rods and sheets are glued together. 
The author has been told that the 3- 
dimensional ticktacktoe boards sold at 
some toy shops under various names are 
satisfactory. 

Each sheet is ruled at l-l/2-inch inter- 
vals parallel to both pairs of edges. Thus 
we have a 4-by-4 array of squares on 
every sheet. The plexiglass framework 

enables us to do away with the writing 
and erasing which would be necessary 
when dealing with similar problems by 

Fig. 16. The cube: a 3-dimensional plastic 

framework for maps 

other methods. In using it, we employ 
movable markers, such as 7/8-inch plastic 

roulette chips. The following scheme is 
suggested: 

1. Mark all p-squares with white chips. 

2. Mark all d-squares with black chips. 

3. As subcubes are selected, mark each 
one with a set of distinctively colored chips. 

Chips of eight or nine different colors 

are usually sufficient to make all the 
selected subcubes easily distinguishable. 
The corresponding products are then 
found by means of labels on the edges of 

the plastic cube. 
One satisfactory labeling scheme is 

shown in Fig. 16. The two bottom planes 
are A, while the middle two are B. The 

variables C, D, E, and F are arranged on 
each plane as on the top, each letter serv- 
ing to label two rows or columns. Oppo- 
site ends of any row, column, or vertical 
on the cube must be considered adjacent. 
Then every subcube may be thought of as 
a rectangular parallelepiped with edges 1, 
2, or 4 units long. For multioutput prob- 
lems, it is best to have a set of cubes, one 
per output. 

The extension to seven variables is 

probably best accomplished by placing 
two cubes side by side. Corresponding 
squares in the two cubes must be con- 
sidered adjacent when looking for fi- 
subcubes. Eight variables can be han- 

dled with a set of four cubes, and nine 
variables require eight cubes. In the 
latter case, it is convenient to make 
them so as to stack easily into two layers 
of four each. Beyond nine variables, the 

mental gymnastics required for synthesis 
will, in general, be formidable. Other 
methods are even more limited in this 
respect. Outstanding exceptions to this 
limitation are the symmetric and posi- 

tional circuits, discussed by Keister, 

Ritchie, and Washburn.4 

Conclusions 

Employment of the map method seems 
to be profitable when nontrivial problems 
in combinational circuit synthesis arise. 
Its most important advantages appear to 

be flexibility and speed. Further, if 

such problems arise frequently, it is 
advantageous to hare a method, such as 
this, which can be learned and used effec- 

tively in a short time by designers new 
to the field. 
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Discussion it was necessary to resort to.a word state- the table of combinations to an equivalent 
merit of the required circuit characteristics algebraic statement became almost a matter 
and then convert this %o an algebraic state- of routine, depending on individual prefer- 

S. H. Caldwell (Massachusetts Institute of ment. ence for simplifying the algebraic expression 
Technology, Cambridge, Mass.): when For simple problems, and especially those by inspection of the table or by algebraic 
Shannon published his classic paper on which involved a small number of variables, manipulation. 
analyzing relay and switching circuits,’ the no difficulty was encountered, but because The arrays described by Veitch (see ref. 3 
engineer was given a powerful method for of their very simplicity such problems rarely of the paper) and by Mr. Karnaugh repre- 
the solution of many problems in the field needed the algebraic approach. When prob- sent further development of the table of 
of switching circuits. Unfortunately, when lems of any magnitude were attempted, the combinations into forms which are more 
one attempted to use the method, there method broke down both because of the compact, and which also have the property 
arose a peculiar sort of frustration. Given a difficulty of writing word statements and of making more evident the ways in which 
circuit which had been designed by the because of the difficulty of converting bulky the algebraic expression of a switching func- 
methods of trial and error prevalent at the word statements into algebraic expressions. tion can be simplified. Of course, the end 
time, it was readily possible to use Shan- These difficulties were resolved by the result desired in all cases is a minimization 
non’s techniques to investigate alternative adaptation of the logical truth table into the of the required circuit, whatever we mean 
forms. In particular, the switching algebra familiar table of combinations (see ref. 1 of by the word “minimization.” 
could be used directly for the simplification the paper). This mechanism enabled the The problem of manipulating functions 
of contact networks. But the situation was ‘designer to state his requirements in an of many variables is much like the problem 
different with respect to the synthesis of a orderly manner, and gave him a systematic the physicist had in his development of 
network (unless it could be described by a means for checking the completeness of his mathematical models of atomic structure. 
symmetric function). In the general case, reasoning. Moreover, the transition from Over a period of years he succeeded in 
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getting better and better mathematical 
solutions for the hydrogen atom, but none 
of his methods really worked when he tried 
to add just one more electron. Similarly, 
in these various methods for reducing 
switching functions to minimal forms we 
seem to be producing better and better 
ways for reducing functions of four variables, 
but we are still rather unhappy about five 
and six variables. The author’s plastic 
cube for the treatment of six variables is an 
ingenious extension of his four-variable 
array, and it certainly has the reduction 
properties he ascribes to it. It does not, 
however, have the neatness of display which 
is a feature of the plane map; groupings of 
variables are not as immediately evident, 
and alternative groupings are even less 
apparent. 

Mr. Karnaugh rightly points out that the 
search represented by this paper is in its 
early stages. It should be added that the 
need for better methods for handling the 
problem in more than four variables will be- 
come acute, and it is a problem worthy of 
the best thinking. Recent developments in 
the synthesis of sequential circuits show that 
the end result of a sequential synthesis is a 
combinational problem. It is a multiple- 
output problem in many variables, and has 
ramifications which will tax the best efforts 
of the circuit designer. Among the possi- 
bilities for meeting this problem is that of 
mechanizing the process involved in the 
map method. 

Incidentally, I am not impressed by the 
drawbacks attributed to the Harvard Com- 
putation Laboratory minimizing chart. 
The large number of entries inyolved is no 
drawback in these days of cheap duplication 
processes. Keeping track of the entries is 
really a simple routine. In using the chart 
for the realization of six-variable functions 
with don’t-care conditions, I find that one 
rarely has to complete the vertical rulmi of 
the entire chart because the required condi- 
tions are usually satisfied with terms at the 
left-hand side of the chart. In some cases’ 
one finds a condition which is satisfied. by 
only one possible minimal term, where the 
acceptance of that term in turn specilies 
the nature of one or more don’t-care condi- 
tions. Of course, the six-variable cube in- 
herently contains the same information, but 
it is doubtful that its display gives the de- 
signer quite as much immediate guidance as 
he gets from the minimizing chart. 
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M. Karnaugh: In view of Professor Cald- 
well’s remarks about mechanization, it 
appears to be desirable to restate the reasons 
for presenting this paper. 

The map method, in its present form, is 
likely to be useful in two ways: as a peda- 

eodc device. for the introduction of ideas 
about logic &cuits and their synthesis, and 
also as a desk-top aid to the working engi- 
neer. 

In making full use of the human faculty 
for recognizing geometric patterns at a 
glance, the map method supplies a number 
of short cuts to synthesis that are not as 
easily found by other methods, On the 
other hand, the development of machine 
which can recognize such relationships has 
only begun. If  one mechanizes the map 
method in a more conventional way, using a 
repetitive scanning technique; then the re- 
sult is similar to a mechanization of the 
‘Harvard minimizing charts and no special 
advantages are expected. 

The minimizing charts, which represent 
one of the 6rst significant advances over 
purely algebraic manipulation, have proven 
their usefulness in practice and will un- 
doubtedly do so even more convincingly 
when machines are programmed to work 
along the same lies. However, it has been 
the author’s experience that maps present 
the specifications for a logic circuit in a form 
more easily used by the human operator. 
Here, habit and taste enter the picture and 
it would be unwise to dwell on this point. 

For those who are relatively .new to the 
problem under discussion, it is suggested 
that a number of problems be worked by 
both methods. It is of interest to see how 
they are related, and each will throw some 
light on the operation of the other. 

The Use OF Steel Sheet for the 

Construction of Shielded Rooms 

A. M. INTRATOR 
ASSOCIATE MEMBER AIEE 

L OW-LEVEL electronic or electrical 
measurements are particularly sus- 

ceptible to errors introduced by external 
electromagnetic influences. The cou- 
pling of spurious electromagnetic energy 
into a measuring system not only may 
result in the receipt of false information 
but also can sometimes cause the com- 
plete masking of the desired data as 
well. For these reasons, many low-level 
measurements, such as the determination 
of crystal characteristics, filter insertion 
loss, noise measurements, and the like, 
must be made in a location as free as 
possible from such interference. In a 
laboratory, such isolation from interfer- 
ence is usually achieved by completely 
enclosing an area in copper or bronze 
screening. By shielding off a region rela- 
tively free of external interference in this 
way, a working area is provided within 
which sensitive electronic measurements 
can be made. 

Certain instrumentation requires a 
much higher degree of freedom from 
extraneous influences than can be ob- 
tained in screened enclosures. A reduc- 
tion in the shielding efficiency of screened 
booths occurs at the lower frequencies be- 
cause of practical limitations in wire size 
and at higher frequencies because the 
wave lengths begin to approach the dimen- 
sions of the mesh openings. Fig. 1 
shows a typical attenuation curve of a 
screened room. Because sheet metal 
presents neither of these difficulties, it is 
often used instead of screening, to enclose 
those areas in which a high degree of 
shielding is required. 

Copper sheet has ordinarily been used 
for this purpose, although copper-clad 
steel has been used in some cases. Such 
rooms are usually double-walled; the 
inner and outer sheet-metal walls are 
spaced about 4 inches apart and are insu- 
lated from each other except at the point 

where the power line enters the room. 
Ordinarily the walls are hung upon a kiln- 
dried, wax-impregnated wood frame and 
all seams and mounting nails or bolts are - 
completely soldered over to reduce the 
possibility of energy leakageinto theroom. 
Special seals are used to insure con- 
tinuous - metal-to-metal contact around 
the periphery of the door. Air is intro- 
duced through “wave guide below cutoff” 
vents, the cutoff frequency being deter- 
mined by the expected top operating fre- 
quencies in the room. All power lines 
entering the room are filtered. 

These rooms are very expensive, having 
ranged in cost from about $10,000 for 
small rooms to $100,000 for much larger 
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